Skip Nav Destination
Close Modal
By
Vladimir Dmitrovic, Rama I. Hegde, Andrew J. Mawer, Rik J. Otte, D. Martin Knotter ...
Search Results for
Raman spectroscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-9 of 9 Search Results for
Raman spectroscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460121
EISBN: 978-1-62708-285-3
...-Ray photoelectron spectroscopy, X-ray fluorescence, Auger electron spectroscopy, Raman spectroscopy, oxygen analysis, and nanoindentation. cold-sprayed coatings residual-stress analysis hardness bond adhesion strength microscopy spectroscopy diffraction MATERIALS CHARACTERIZATION...
Abstract
This chapter elucidates the indispensable role of characterization in the development of cold-sprayed coatings and illustrates some of the common processes used during coatings development. Emphasis is placed on the advanced microstructural characterization techniques that are used in high-pressure cold spray coating characterization, including residual-stress characterization. The chapter includes some preliminary screening of tool hardness and bond adhesion strength, as well as a distinction between surface and bulk characterization techniques and their importance for cold spray coatings. The techniques covered are optical microscopy, X-Ray diffraction, scanning electron microscopy, focused ion beam machining, electron probe microanalysis, transmission electron microscopy, and electron backscattered diffraction. The techniques also include electron channeling contrast imaging, X-Ray photoelectron spectroscopy, X-ray fluorescence, Auger electron spectroscopy, Raman spectroscopy, oxygen analysis, and nanoindentation.
Image
in Failure Analysis Techniques and Methods for Microelectromechanical Systems (MEMS)[1]
> Microelectronics Failure Analysis: Desk Reference
Published: 01 November 2019
Figure 43 a) Schematic of a Si membrane of a pressure sensor bonded to a glass substrate. The membrane is in under-pressure, b) deflection of the membrane measured using laser interference, c) biaxial mechanical stress in the membrane measured using micro-Raman spectroscopy.
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110563
EISBN: 978-1-62708-247-1
... at an area of high stress concentration and slowly growing through the material until failure occurs. One study used Raman spectroscopy to measure directly the strain in the silicon and corroborated it with finite element calculations to predict the location of fracture [24] . Figure 17 shows a test...
Abstract
This chapter discusses the various failure analysis techniques for microelectromechanical systems (MEMS), focusing on conventional semiconductor manufacturing processes and materials. The discussion begins with a section describing the advances in integration and packaging technologies that have helped drive the further proliferation of MEMS devices in the marketplace. It then shows some examples of the top MEMS applications and quickly discusses the fundamentals of their workings. The next section describes common failure mechanisms along with techniques and challenges in identifying them. The chapter also provides information on the testing of MEMS devices. It covers the two common challenges in sample preparation for MEMS: decapping, or opening up the package, without disturbing the MEMS elements; and removing MEMS elements for analysis. Finally, the chapter discusses the aspects of failure analysis techniques that are of particular interest to MEMS.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110447
EISBN: 978-1-62708-247-1
... in such particle depends on the particle creation history. Interestingly, the concentration of the two allotropes can be measured with Raman spectroscopy. In Figure 19 an example of a conductive particle that has been traced back to come from carbon soot. Carbon soot is an additive to the epoxy mold compound...
Abstract
There are several analytical methods available that can be used in-line on whole wafers as well as off-line on de-processed products that are returned from the field. These techniques are surface analytical techniques that can be used to characterize the bulk of the material. The main six methods used in semiconductor industry are: Auger spectroscopy, dynamic secondary ion mass spectroscopy, time of flight static secondary ion mass spectroscopy (ToF-SIMS), X-ray photoelectron spectroscopy, scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscope-EDX. This review specifically addresses ToF-SIMS and describes some typical examples of the application of Auger and SEM-EDX.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780343
EISBN: 978-1-62708-281-5
...; solution and solid-state nuclear magnetic resonance (NMR) spectroscopy; ultraviolet-visible spectroscopy; mass spectroscopy; and Raman spectroscopy. Only the characterization of plastics by IR and NMR spectroscopy are reviewed here. IR or FTIR Spectroscopy The characteristic IR bands...
Abstract
This article introduces procedures an engineer or materials scientist can use to investigate failures. It provides a brief survey of polymer systems and key properties that need to be measured during failure analysis. The article begins with an overview of the problem-solving approach pertinent to structure analysis. This is followed by a review of the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy. The article then provides information on the distribution of molecular weight of an engineering plastic. It further discusses the methods used in thermal analysis, namely differential thermal analysis, thermogravimetric analysis, thermal-mechanical analysis, and dynamic mechanical analysis. The following sections provide details on X-ray diffraction for analyzing crystalline phases and on a minimal scheme for polymer analysis and characterization to assist the design engineer. The article ends with a discussion on the thermal-analytical scheme for analyzing the milligram quantities of polymer samples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780383
EISBN: 978-1-62708-281-5
... >10 μm <100 ppm Moderate Raman Chemical structure >1 μm >1 μm <0.1 at.% Difficult Note: EDS, energy-dispersive spectroscopy; WDS, wavelength-dispersive spectroscopy; AES, Auger electron spectroscopy; XPS, x-ray photoelectron spectroscopy; TOF-SIMS, time-of-flight secondary...
Abstract
This article covers common techniques for surface characterization, including the modern scanning electron microscopy and methods for the chemical characterization of surfaces by Auger electron spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. The principles of surface analysis and some of the applications of the technique in polymer failure studies are also provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290139
EISBN: 978-1-62708-319-5
Abstract
Binder removal approaches involve various combinations of heat, solvents, vacuum, and pressure. In each variant, the goal is binder removal without component damage. This chapter addresses the factors that control success, showing how process decisions depend on the powder and binder characteristics. The chapter starts with a comparison of binder-, lubricant-, and polymer-removal situations that arise after powder shaping and then describes the general principles of binder removal in powder-binder techniques. The subsequent sections discuss in detail characteristics, operating procedure, equipment setup, advantages, limitations, and applications of first- and second-stage binder removal processes, as well as the factors influencing these processes. Cost issues associated with binder-removal technologies are also discussed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.9781627083041
EISBN: 978-1-62708-304-1
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.9781627083485
EISBN: 978-1-62708-348-5