Skip Nav Destination
Close Modal
Search Results for
Radiography
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 81 Search Results for
Radiography
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 April 2013
Fig. 8 Digital radiography image of a die cast aluminum carburetor. Porosity appears as dark spots in the area of the center bore, through the vertical center of the image. Courtesy of B.G. Isaacson, Bio-Imaging Research, Inc.
More
Image
Published: 01 April 2013
Fig. 10 Digital radiography images of an investment cast jet engine turbine blade showing detail through a wide range in material thickness. The trailing edge of the blade (along the top of the image) is 2 mm (0.080 in.) thick, the root section of the blade (to the far left in the image) is 19
More
Image
Published: 01 April 2004
Fig. 5.40 Representation of geometric magnification in microfocus x-radiography
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720233
EISBN: 978-1-62708-305-8
... Abstract This chapter discusses radiography methods using x-rays, gamma rays, and neutrons. It begins with a discussion on the applications and principles of radiography followed by sections providing information on the sources of radiation, classifications, and characteristics of x-ray tubes...
Abstract
This chapter discusses radiography methods using x-rays, gamma rays, and neutrons. It begins with a discussion on the applications and principles of radiography followed by sections providing information on the sources of radiation, classifications, and characteristics of x-ray tubes. Three primary attenuation processes of electromagnetic radiation, namely photoelectric effect, Compton scattering, and pair production, are covered. The chapter then discusses the principles of shadow formation, the process involved in the conversion of radiation into a form suitable for observation, and the characteristics of x-ray film. It provides information on various exposure factors in film radiography. The chapter provides a description of the characteristics that differentiate neutron radiography from x-ray or gamma ray radiography. The application of neutron radiography is described in terms of its advantages for improved contrast on low atomic number materials, discrimination between isotopes, or inspection of radioactive specimens.
Image
Published: 01 April 2013
Fig. 7 Schematic of flaws and their x-ray images. Defect types that can be detected by x-ray radiography are those that change the attenuation of the transmitted x-rays. Source: Ref 4
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720393
EISBN: 978-1-62708-305-8
... evaluation methods to flaw detection in P/M parts. The nondestructive evaluation methods covered are mechanical proof testing, metallography, liquid penetrant crack detection, filtered particle crack detection, magnetic particle crack inspection, direct current resistivity testing, x-ray radiography...
Abstract
Fabricated powder metallurgy (P/M) parts are evaluated and tested at several stages during manufacturing for part acceptance and process control. The various types of tests included are dimensional evaluation, density measurements, hardness testing, mechanical testing, and nondestructive testing. This chapter is a detailed account of these testing methods. It describes the four most common types of defects in P/M parts, namely ejection cracks, density variations, microlaminations, and poor sintering. The chapter discusses the capabilities and limitations of various nondestructive evaluation methods to flaw detection in P/M parts. The nondestructive evaluation methods covered are mechanical proof testing, metallography, liquid penetrant crack detection, filtered particle crack detection, magnetic particle crack inspection, direct current resistivity testing, x-ray radiography, computed tomography, gamma-ray density determination, and ultrasonic techniques.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930039
EISBN: 978-1-62708-359-1
... is included that encompasses techniques used to characterize the locations and structure of internal and surface defects, including radiography, ultrasonic testing, and liquid penetrant inspection. The next group of characterization procedures discussed is destructive tests, requiring the removal of specimens...
Abstract
This article reviews nondestructive and destructive test methods used to characterize welds. The first process of characterization discussed involves information that may be obtained by direct visual inspection and measurement of the weld. An overview of nondestructive evaluation is included that encompasses techniques used to characterize the locations and structure of internal and surface defects, including radiography, ultrasonic testing, and liquid penetrant inspection. The next group of characterization procedures discussed is destructive tests, requiring the removal of specimens from the weld. The third component of weld characterization is the measurement of mechanical and corrosion properties. Following the discussion on the characterization procedures, the second part of this article provides examples of how two particular welds were characterized according to these procedures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140047
EISBN: 978-1-62708-335-5
.... This chapter describes the causes and control of porosity and inclusions in aluminum castings as well as the combined effects of hydrogen, shrinkage, and inclusions on the properties of aluminum alloys. In addition, it discusses the applications of radiography to reveal internal discontinuities in aluminum...
Abstract
Porosity in aluminum is caused by the precipitation of hydrogen from liquid solution or by shrinkage during solidification, and more usually by a combination of these effects. Nonmetallic inclusions entrained before solidification influence porosity formation and mechanical properties. This chapter describes the causes and control of porosity and inclusions in aluminum castings as well as the combined effects of hydrogen, shrinkage, and inclusions on the properties of aluminum alloys. In addition, it discusses the applications of radiography to reveal internal discontinuities in aluminum.
Image
Published: 01 April 2013
Fig. 9 Comparison of (a) computed tomography (CT) system and a CT image at the height of the flaw shows the flaw in more detail and in a form an inexperienced viewer can readily recognize; (b) radiography system and a high quality digital radiograph of a solid rocket motor igniter shows
More
Image
Published: 01 April 2013
Fig. 9 Evaluation of cast transmission housing assembly. (a) Photograph of cast part. (b) Digital radiography image used to verify the steel spring pin and shuttle valve assembly through material thicknesses ranging from 3 mm (⅛
in.) in the channels to 25 mm (1 in.) in the rib sections
More
Image
Published: 01 April 2004
Fig. 4.30 Example of a large area, 10 × 10 mm (0.4. × 0.4 in.), made fluxless, at 10 °C (18 °F) superheat, using In-15Pb-5Ag solder introduced in the form of a wire cross, shown in Fig. 3.30 . The joint fill is revealed by x-radiography. A line of residual voids marks the location
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720001
EISBN: 978-1-62708-305-8
... be automated Normally requires coupling to material either by contact to surface or immersion in a fluid such as water. Surface needs to be smooth. Adhesive assemblies for bond integrity; laminations; hydrogen cracking Radiography Changes in density from voids, inclusions, material variations; placement...
Abstract
This chapter provides an overview of the various inspection methods used with metals and alloys, namely visual inspection, coordinate measuring machines, machine vision, hardness testing, tensile testing, chemical analysis, metallography, and nondestructive testing. The nondestructive testing methods discussed are liquid penetrant inspection, magnetic particle inspection, eddy current inspection, radiographic inspection, and ultrasonic testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270019
EISBN: 978-1-62708-301-0
... of the induced current. The method is useful for detecting surface and subsurface flaws, for sorting dissimilar metals, for detecting variations in composition and microstructure, and for measuring the thickness of nonconductive coatings. The method is limited to conducting materials. Radiography Using x-rays...
Abstract
This chapter discusses the basic steps of a failure investigation. It explains that the first step is to gather and document information about the failed component and its operating history. It advises investigators to visit the failure site as soon as possible to record damages and collect test specimens for subsequent examination and chemical analysis. It also discusses the role of mechanical property testing, the use of nondestructive evaluation, and the final step of generating a report.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200197
EISBN: 978-1-62708-354-6
... seeping from the discontinuity. ASTM has prepared standard procedures for liquid penetrant inspection in ASTM E-165, E-433. Acceptance criteria should be indicated at the time of order. Radiography Radiography has become the major non-destructive test method for determining the presence of internal...
Abstract
After pouring, castings are allowed to solidify and cool. They are later removed from the molds in the shakeout operation. A series of activities then follow, which are generally referred to as finishing and heat treatment. These activities can be broadly categorized as shakeout, abrasive blast cleaning, removal of risers, ingates, and discontinuities, rough inspection, removal of discontinuities, finishing welding, heat treatment, and final visual, dimensional, and NDT inspection. This chapter provides a detailed discussion on these activities.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050245
EISBN: 978-1-62708-311-9
...; laminations; hydrogen cracking Radiography Changes in density from voids, inclusions, material variations; placement of internal parts Can be used to inspect wide range of materials and thicknesses; versatile; film provides record of inspection Radiation safety requires precautions; expensive; detection...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930057
EISBN: 978-1-62708-359-1
.... 2 Wormhole porosity in a weld bead. Longitudinal cut. 20x Radiography is the most widely used nondestructive method for detecting subsurface gas porosity in weldments. The radiographic image of round porosity appears as round or oval spots with smooth edges, and elongated porosity appears...
Abstract
Discontinuities are interruptions in the desirable physical structure of a weld. This article describes the types of weld discontinuities that are characteristic of the principal welding processes. Discontinuities covered are metallurgical discontinuities, discontinuities associated with specialized welding processes, and base metal discontinuities. In addition, information on the common inspection methods used to detect these discontinuities is provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030360
EISBN: 978-1-62708-282-2
... of available techniques is reduced. For example, x-ray radiography is commonly carried out at the fabrication stage but is generally not a realistic inspection method in service, where gamma radiography is generally employed due to its portability and independence from an external power source...
Abstract
This chapter concentrates almost exclusively on inspection techniques related to pressure vessels and pipework. The discussion covers the general aspects associated with inspection and the key factors relevant to it. In addition, the chapter addresses processes involved in data collection and management, namely data acquisition, reporting, trending, reviewing, and auditing. Capabilities and limitations of in-service inspection techniques are discussed in the Appendix to this chapter.