Skip Nav Destination
Close Modal
Search Results for
Pressure Vessels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 302 Search Results for
Pressure Vessels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220475
EISBN: 978-1-62708-259-4
... extends for more than 50 mm (2 in.). The location of test specimens to evaluate the process are indicated. Etchant: hot hydrochloric acid. Abstract Abstract This chapter discusses the properties and compositions of steels used in pressure vessels, piping, boilers, rebar, and other structural...
Abstract
This chapter discusses the properties and compositions of steels used in pressure vessels, piping, boilers, rebar, and other structural applications. It covers fine-grained steels, quenched and tempered steels, and controlled rolled (thermomechanical treatment) steels. It also compares and contrasts steels used for concrete reinforcement and in various types of pressure vessels, and presents a metallographic study of the effects of welding on the micro and macrostructure of steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860019
EISBN: 978-1-62708-338-6
...Abstract Abstract This chapter outlines a methodology for the design of cylindrical pressure vessels, with emphasis on the establishment of winding patterns and the interaction between the real fiber bed geometry (finite roving dimensions) and the theoretical one. To highlight the materials...
Abstract
This chapter outlines a methodology for the design of cylindrical pressure vessels, with emphasis on the establishment of winding patterns and the interaction between the real fiber bed geometry (finite roving dimensions) and the theoretical one. To highlight the materials-shape/pattern-roving interaction, an outline of the basic principles of pressure vessel design is provided. After a short section on laminate thickness approximation techniques (essential for establishing a range of acceptable roving dimensions), the chapter concludes with an example demonstrating the methodology from an initial set of design parameters up to the final stage, including patterns, roving dimensions, and production time minimization.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860115
EISBN: 978-1-62708-338-6
...Abstract Abstract The necessity of developing the lightest-weight structures with sufficient strength was the driving factor for the development of filament-wound composite pressure vessels. This chapter presents a brief history of the development of rocket motor cases (RMCs), followed...
Abstract
The necessity of developing the lightest-weight structures with sufficient strength was the driving factor for the development of filament-wound composite pressure vessels. This chapter presents a brief history of the development of rocket motor cases (RMCs), followed by a comparison of the advantages of composites over metals for RMCs. A discussion on a typical design, analysis, and manufacturing operation follows. The chapter introduces the basic design approach and shows some sizing techniques along with example calculations. It discusses the processes involved in the testing of the composite pressure vessel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490329
EISBN: 978-1-62708-340-9
...Abstract Abstract This chapter covers the failure modes and mechanisms of concern in hydroprocessing reactor vessels and the methods used to assess lifetime and performance. It begins with a review of the materials used in the construction of pressure-vessel shells, the challenges they face...
Abstract
This chapter covers the failure modes and mechanisms of concern in hydroprocessing reactor vessels and the methods used to assess lifetime and performance. It begins with a review of the materials used in the construction of pressure-vessel shells, the challenges they face, and the factors that determine shell integrity. The discussion addresses key properties and design parameters including allowable stress, fracture toughness, the effect of microstructure and composition on embrittlement, high-temperature creep, and subcritical crack growth. The chapter also provides information on the factors that affect cladding integrity and ends with a section on life-assessment techniques.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860001
EISBN: 978-1-62708-338-6
... not eliminate the need for proper fiber handling. This chapter is a primer on modern filament winding equipment and its use, starting with an overview of machine control and then discussing the design and structural analysis of filament wound components such as pressure vessels, pipes, grid structures, deep sea...
Abstract
Most filament winding machines now have computer controls and at least three axes. Winding with four axes is increasingly common because the shapes of the products have evolved to include more complexity. The automation used on the winding machine and ancillary components does not eliminate the need for proper fiber handling. This chapter is a primer on modern filament winding equipment and its use, starting with an overview of machine control and then discussing the design and structural analysis of filament wound components such as pressure vessels, pipes, grid structures, deep sea oil platform drill risers, high-speed rotors, and filament-wound preforms.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860035
EISBN: 978-1-62708-338-6
... of geometries that can be wound, from the simple to the highly complex, with insight into the limitations, advantages, and challenges of each. Components covered include classic axisymmetric parts (rings, pipes, driveshafts, pipe reducers, tapered shafts, closed-end pressure vessels, and storage tanks...
Abstract
This chapter discusses the ways in which the evolution of filament winding software systems has capitalized on the inherent flexibility of computer numerical controlled winding machines and enhanced their productivity. It provides a detailed discussion on different types of geometries that can be wound, from the simple to the highly complex, with insight into the limitations, advantages, and challenges of each. Components covered include classic axisymmetric parts (rings, pipes, driveshafts, pipe reducers, tapered shafts, closed-end pressure vessels, and storage tanks), nonround sections (aeromasts, airfoils, box sections, and fuselage sections), curved-axis parts (elbows, ducts), and special applications (tees). Basic winding concepts, such as band pattern, are discussed and explained, and some simple predictive formulae are introduced. The chapter also provides examples of programming various geometries using advanced software tools and discusses how various materials, such as rovings, tow-preg, prepreg tape, and woven materials, affect winding program generation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030360
EISBN: 978-1-62708-282-2
...Abstract Abstract This chapter concentrates almost exclusively on inspection techniques related to pressure vessels and pipework. The discussion covers the general aspects associated with inspection and the key factors relevant to it. In addition, the chapter addresses processes involved...
Abstract
This chapter concentrates almost exclusively on inspection techniques related to pressure vessels and pipework. The discussion covers the general aspects associated with inspection and the key factors relevant to it. In addition, the chapter addresses processes involved in data collection and management, namely data acquisition, reporting, trending, reviewing, and auditing. Capabilities and limitations of in-service inspection techniques are discussed in the Appendix to this chapter.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.9781627083386
EISBN: 978-1-62708-338-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610001
EISBN: 978-1-62708-303-4
... of the 4694 warships suffered brittle fracture or structure failure at the welded steel joints. Selection of increased toughness material Improved fabrication practices Development of fracture mechanics Liquefied natural gas (LNG) storage tank 1944 Failure and explosion of an LNG pressure vessel due...
Abstract
This chapter provides a brief review of industry’s battle with fatigue and fracture and what has been learned about the underlying failure mechanisms and their effect on product lifetime and service. It recounts some of the tragic events that led to the discovery of fatigue and brittle fracture and explains how they reshaped design philosophies, procedures, and tools. It also discusses the influence of material and manufacturing defects, operating conditions, stress concentration and intensity, temperature and pressure, and cyclic loading, all of which play a role in the onset of fatigue cracking and thus should be considered when predicting useful product life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060231
EISBN: 978-1-62708-343-0
.... Shuttle flights are not permitted with turbopump blades that are known to have cracks at point A . Nickel-Hydrogen Battery Pressure Vessel Proof Testing Another type of aerospace component is an electric-energy storage device that had been proposed for an early version of a United States space...
Abstract
This chapter explains how the authors assessed the potential risks of creep-fatigue in several aerospace applications using the tools and techniques presented in earlier chapters. It begins by identifying the fatigue regimes encountered in the main engines of the Space Shuttle. It then describes the types of damage observed in engine components and the methods used to mitigate problems. It also discusses the results of analyses that led to changes in design or approach and examines fatigue-related issues in turbine engines used in commercial aircraft.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200233
EISBN: 978-1-62708-354-6
..., A217, A389, and A487, the toughness (impact test) requirement of A703 may be used based upon agreement between the producer and the user. The ASME Boiler and Pressure Vessel Code requires impact testing for almost all pressure vessel applications in their Section VIII “Pressure Vessel” category...
Abstract
The design stresses for most pressure-containing structural application, which are based upon minimum mechanical properties designated in the specifications published by the American Society for Testing and Materials (ASTM). This chapter reviews metallurgical characteristics and their influence on the properties and performance of structural carbon and low alloy steels and contains a summary of the relevant features of the ASTM product specifications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860095
EISBN: 978-1-62708-338-6
... compaction is not necessary. One application survives with virtually 100% voids. An isotensoid liquefied petroleum gas pressure vessel ( Ref 8.15 ) is dry wound (no resin) over a thermoplastic liner and goes through a series of product tests. The operating pressure is 8 to 10 bar (116 to 145 psi...
Abstract
The objective of mechanical testing of an engineered material is to provide data necessary for the analysis, design, and fabrication of structural components using the material. The testing of filament-wound composite materials offers unique challenges because of the special characteristics of composites. This chapter describes suitable static mechanical test techniques for characterizing laminated composite materials. The approach is to provide recommended techniques, based on consensus opinions of fabricators and users of filament-wound composites, and to survey available techniques that have been used successfully in the field. The chapter describes the effects of various factors on the properties of composite constituents, including fibers, resins, and unidirectional plies. Some aspects of specimen selection are also described. The chapter provides information on pressure bottles and tubular parts that have been developed as standard test specimens for combined load testing of composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490001
EISBN: 978-1-62708-340-9
... candidates for the higher-temperature end of the spectrum, whereas components operating near 540 °C (1000 °F), such as the turbine shafts and disks, are made of low-alloy ferritic steels. Reactor Pressure Vessels for Petroleum Refining The refining or manufacturing of petroleum products...
Abstract
The ability to accurately assess the remaining life of components is essential to the operation of plants and equipment, particularly those in service beyond their design life. This, in turn, requires a knowledge of material failure modes and a proficiency for predicting the near and long term effects of mechanical, chemical, and thermal stressors. This chapter presents a broad overview of the types of damage to which materials are exposed at high temperatures and the approaches used to estimate remaining service life. It explains how operating conditions in power plants and oil refineries can cause material-related problems such as embrittlement, creep, thermal fatigue, hot corrosion, and oxidation. It also discusses the factors and considerations involved in determining design life, defining failure criteria, and implementing remaining-life-assessment procedures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630257
EISBN: 978-1-62708-270-9
... tip. Mode III (tearing mode): shear stress in the z direction, or parallel to the crack tip. Fig. 7 Hydrotest failure of a carbon steel pressure vessel. (a) Schematic of pressure vessel that failed during hydrotesting showing the location of the origin of the failure and the path...
Abstract
Fracture mechanics is a well-developed quantitative approach to the study of failures. This chapter discusses fracture toughness and fracture mechanics, linear-elastic fracture mechanics, and modes of loading. The discussion also covers plane strain and stress and crack growth kinetics. The chapter presents a case history that illustrates the use of fracture mechanics in failure analysis. An appendix provides a more detailed discussion of fracture mechanics concepts.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490021
EISBN: 978-1-62708-340-9
... σ y ) 2 = 0.6478 ( CVN σ y − 0.0098 ) [Iwadate et al ( Ref 35 )] where K Ic is in MPa m , σ y is in MPa, and CVN is in joules. The Iwadate correlation between K Ic and CVN for a variety of low-alloy pressure-vessel...
Abstract
The toughness of a material is its ability to absorb energy in the form of plastic deformation without fracturing. It is thus a measure of both strength and ductility. This chapter describes the fracture and toughness characteristics of metals and their effect on component lifetime and failure. It begins with a review of the ductile-to-brittle transition behavior of steel and the different ways to measure transition temperature. It then explains how to predict fracture loads using linear-elastic fracture mechanics and how toughness is affected by temperature and strain rate as well as grain size, inclusion content, and impurities. It also presents the theory and use of elastic-plastic fracture mechanics and discusses the causes, effects, and control of temper embrittlement in various types of steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030292
EISBN: 978-1-62708-282-2
... to be the associated reduction in residual tensile stresses in the area of the weldment, and the reduction in hardness and changes in the carbide morphology of weld heat-affected zones (HAZ). For refinery reactor vessels, which operate at high temperatures and pressures, 2.25Cr-1Mo steel is widely used. For improved...
Abstract
This chapter presents the primary considerations and mechanisms for corrosion and how they are involved in the selection of materials for process equipment in petroleum refineries and petrochemical plants. In addition, specific information on mechanical properties, corrosion, sulfide stress cracking, hydrogen-induced cracking, stress-oriented hydrogen-induced cracking, hydrogen embrittlement cracking, stress-corrosion cracking, velocity-accelerated corrosion, erosion-corrosion, and corrosion control is provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630023
EISBN: 978-1-62708-270-9
... bolted or riveted joints, as shown in Fig. 7(b) , and in closely fitting clevis joints. True double-shear fracture occurs only when there is no bending of the member that becomes fractured; bending frequently occurs, however, if the joint is loose or the sides spread. Thin-Wall Pressure Vessels...
Abstract
The relationship of stress and strength gradients must be considered simultaneously in analysis of a particular type of fracture. This chapter discusses the principal elastic stress distribution in members of various shapes under different types of pure loads. A basic understanding of both the stress and strength gradients of metal parts with and without stress concentrations and under different types of loading is provided. The chapter also describes the effect of service conditions on applied stresses.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860007
EISBN: 978-1-62708-338-6
... winder Fig. 2.9 Three-spindle, four-axes winder to produce pressure vessels These multiple-spindle winders were the first big step toward automating filament winding machines and increasing efficiency of the filament winding process. One drawback, however, was that multiple-spindle...
Abstract
This chapter reviews the development of filament winding systems and the automated processes used in state-of-the-art filament winding facilities. It first provides a description on the early stages of modern filament winding, followed by brief information on the advances of filament winding in the computer age. Then, the chapter discusses the requirements for filament winding in manufacturing oil and gas industry components and in high-volume production of sporting goods, propane tanks, and curing ovens. The chapter concludes with examples of the versatility of filament winding in producing complex parts.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200369
EISBN: 978-1-62708-354-6
... ranging from 600 to 1300 °F (316-704 °C), depending on the alloy content and the hardness desired. Some of the construction specifications, such as the ASME Boiler and Pressure Vessel Code, state the minimum stress-relieving temperature which must be employed. Corrosion-Resistant High Alloy Steels...
Abstract
This chapter covers the basics of weldability of cast steels such as carbon and low alloy steels, corrosion-resistant high alloy steels, nickel-base alloys, heat-resistant high alloy steels, and wear-resistant high austenitic manganese steels. It provides an overview of weld overlay and hard facing; cast-weld construction; and plasma arc cutting and plasma arc welding. The chapter discusses different types of welding processes. These include shielded metal-arc welding, air carbon arc cutting process, gas tungsten-arc welding, gas metal-arc welding process, flux-cored arc welding, submerged arc welding, and electroslag and electro-gas welding.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.9781627083409
EISBN: 978-1-62708-340-9