Skip Nav Destination
Close Modal
Search Results for
Piping
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 638 Search Results for
Piping
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220475
EISBN: 978-1-62708-259-4
... Abstract This chapter discusses the properties and compositions of steels used in pressure vessels, piping, boilers, rebar, and other structural applications. It covers fine-grained steels, quenched and tempered steels, and controlled rolled (thermomechanical treatment) steels. It also compares...
Abstract
This chapter discusses the properties and compositions of steels used in pressure vessels, piping, boilers, rebar, and other structural applications. It covers fine-grained steels, quenched and tempered steels, and controlled rolled (thermomechanical treatment) steels. It also compares and contrasts steels used for concrete reinforcement and in various types of pressure vessels, and presents a metallographic study of the effects of welding on the micro and macrostructure of steel.
Image
Published: 01 November 2012
Fig. 8 Stainless steel piping such as small-bore piping is designed to leak before break. A fatigue crack either initiates at the toe or the root of the weld. (a) Typical socket fitting with a fillet weld. (b) Micrograph of a cross section through a socket-welded joint showing fatigue crack
More
Image
in Stress-Corrosion Cracking of Carbon and Low-Alloy Steels (Yield Strengths Less Than 1241 MPa)[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 2.10 Cross section of piping welds showing service-induced monoethanolamine SCC. Source: Ref 2.146
More
Image
in Stress-Corrosion Cracking of Weldments in Boiling Water Reactor Service[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 15.1 Schematic of boiling water reactor (BWR) recirculation piping system
More
Image
in Detection and Sizing of Stress-Corrosion Cracks in Boiling Water Reactor Environments[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 16.1 Cross section of a boiling water reactor (BWR) piping weld removed from service
More
Image
in Failure Analysis of Stress-Corrosion Cracking[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 18.25 Intergranular cracking of sensitized nickel alloy 600 piping in water service containing H 2 S and cyanides. Original magnification: 15×. Source: Ref 18.1
More
Image
Published: 01 September 2008
Fig. 2 Wormhole or piping porosity in weld metal deposited by submerged arc welding. Plate is 19 mm thick.
More
Image
in Structural Steels and Steels for Pressure Vessels, Piping, and Boilers
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 14.11 Dual-phase API X100 steel for piping produced through controlled rolling. C = 0.06%, Mn = 1.96%, Nb = 0.04%, Ti = 0.01%, + Ni, Cu, Mo. Granular ferrite and bainite (martensite and retained austenite are also present). Courtesy of Nippon Steel Corporation. Source: Ref 11
More
Image
Published: 01 April 2013
Fig. 2 Schematic showing piping in top poured ingots. Source: Ref 1
More
Image
Published: 01 December 2006
Fig. 3 Expected location of IGSCC in BWR piping. Source: Ref 7
More
Image
Published: 01 December 2006
Fig. 3.10 Formation of extrusion piping defect. 1, secondary deformation zone; 2, billet core; 3, shear zone; 4, primary deformation zone; 5, shear zone; 6, dead metal zone; 7, extrusion
More
Image
Published: 01 December 2003
Fig. 13 Failure time for seven polyethylene piping materials in lgepal. (a) Plotted against nominal (initial) stress. (b) Plotted against reduced stress. Source: Ref 7
More
Image
Published: 01 September 2008
Fig. 3 Overview of pipe section. Cracking is visible on right end of the pipe at the toe of the weld. Courtesy of MEICharlton, Inc.
More
Image
in Solidification, Segregation, and Nonmetallic Inclusions
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 8.45 Macrographs showing examples of residual pipe and/or secondary pipe in hot formed bars produced from conventional ingots. No etching.
More
Image
Published: 01 December 2006
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090359
EISBN: 978-1-62708-266-2
... Abstract This chapter describes how ultrasonic testing came to be a viable method for evaluating intergranular stress-corrosion cracking (SCC) in large-diameter stainless steel pipe welds in boiling water reactor service. Intergranular SCC can be difficult to detect using nondestructive...
Abstract
This chapter describes how ultrasonic testing came to be a viable method for evaluating intergranular stress-corrosion cracking (SCC) in large-diameter stainless steel pipe welds in boiling water reactor service. Intergranular SCC can be difficult to detect using nondestructive evaluation (NDE) techniques because of its treelike branching pattern and its location in the heat-affected zone within the weld. As the chapter explains, by optimizing excitation and reflected waveforms, switching to dual-element sensing, properly orienting the scanning path, and using crack-tip diffraction and amplitude-drop techniques, the height, length, and location of intergranular cracks can be accurately determined anywhere along the walls of the pipe as well as in weld areas.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860035
EISBN: 978-1-62708-338-6
... that can be wound, from the simple to the highly complex, with insight into the limitations, advantages, and challenges of each. Components covered include classic axisymmetric parts (rings, pipes, driveshafts, pipe reducers, tapered shafts, closed-end pressure vessels, and storage tanks), nonround...
Abstract
This chapter discusses the ways in which the evolution of filament winding software systems has capitalized on the inherent flexibility of computer numerical controlled winding machines and enhanced their productivity. It provides a detailed discussion on different types of geometries that can be wound, from the simple to the highly complex, with insight into the limitations, advantages, and challenges of each. Components covered include classic axisymmetric parts (rings, pipes, driveshafts, pipe reducers, tapered shafts, closed-end pressure vessels, and storage tanks), nonround sections (aeromasts, airfoils, box sections, and fuselage sections), curved-axis parts (elbows, ducts), and special applications (tees). Basic winding concepts, such as band pattern, are discussed and explained, and some simple predictive formulae are introduced. The chapter also provides examples of programming various geometries using advanced software tools and discusses how various materials, such as rovings, tow-preg, prepreg tape, and woven materials, affect winding program generation.
1