Skip Nav Destination
Close Modal
Search Results for
Phase transformations
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 783 Search Results for
Phase transformations
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420015
EISBN: 978-1-62708-310-2
... atoms. It discusses the difference between interstitial and substitutional solid solutions and the factors that determine the type of solution that two metals are likely to form. It also addresses the development of intermediate phases, the role of free energy, transformation kinetics, liquid-to-solid...
Abstract
This chapter describes the physical characteristics, properties, and behaviors of solid solutions under equilibrium conditions. It begins with a review of a single-component pure metal system and its unary phase diagram. It then examines the solid solution formed by copper and nickel atoms. It discusses the difference between interstitial and substitutional solid solutions and the factors that determine the type of solution that two metals are likely to form. It also addresses the development of intermediate phases, the role of free energy, transformation kinetics, liquid-to-solid and solid-state phase transformations, and the allotropic nature of metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240053
EISBN: 978-1-62708-251-8
... Abstract This chapter provides a short introduction to phase transformations, namely, the liquid-to-solid phase transformations that occur during solidification and the solid-to-solid transformations that are important in processing, such as heat treatment. It also introduces the concept...
Abstract
This chapter provides a short introduction to phase transformations, namely, the liquid-to-solid phase transformations that occur during solidification and the solid-to-solid transformations that are important in processing, such as heat treatment. It also introduces the concept of free energy that governs whether or not a phase transformation is possible, and then the kinetic considerations that determine the rate at which transformations take place. The chapter also describes important solid-state transformations such as spinodal decomposition and martensitic transformation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560029
EISBN: 978-1-62708-291-4
... isothermal transformation and continuous-cooling diagrams and how to recognize the effect of various alloying elements. alloying elements constitutional diagram continuous-cooling diagram isothermal transformation diagram phase transformations It has been established that a microscopical...
Abstract
This chapter describes some of the most essential tools in metallurgy and what they reveal about the structure, composition, and processing requirements of steel. It begins by identifying important details in the constitutional diagram of iron-cementite. It then explains how to read isothermal transformation and continuous-cooling diagrams and how to recognize the effect of various alloying elements.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860295
EISBN: 978-1-62708-348-5
... austenitic stainless steel cryogenic applications iron-nickel alloys martensitic transformation polymers solidified gases superconductors 9.1 Introduction In the late 1800s, the German metallurgist Martens identified a new crystalline phase in steel, which he associated with steel hardening...
Abstract
This chapter concentrates on very low-temperature martensitic transformations, which are of great concern for cryogenic applications and research. The principal transformation characteristics are reviewed and then elaborated. The material classes or alloy systems that exhibit martensitic transformations at very low temperatures are discussed. In particular, the martensitic transformations and their effects in austenitic stainless steels, iron-nickel alloys, practical superconductors, alkali metals, solidified gases, and polymers are discussed.
Image
in Steel as a Material
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 1.3 The Fe-C phase equilibrium diagram at 1 atm. The phase transformations of Fe are indicated on the vertical axis (0% C), corresponding to pure Fe. The range of temperatures in which FCC (called γ, or austenite) is stable increases with the addition of C up to around 0.8
More
Image
Published: 01 October 2012
Image
Published: 01 August 2018
Fig. 11.46 Hot working with phase transformation on cooling. (a) Conventional: while the structure is controlled during hot working following adequate combinations of temperature and deformation, the final properties of the part are defined in a heat treatment performed afterward. (b
More
Image
Published: 01 December 2003
Fig. 7 Schematic illustration of the phase transformation taking place when hardening steel with sufficient carbon present. Crystal lattice: bcc, body-centered cubic; fcc, face-centered cubic; bct, body-centered tetragonal
More
Image
Published: 01 June 1983
Figure 9.1 Free-energy-vs.-temperature schematic for phase transformation. The equilibrium temperature is T 0 ; the martensite start temperature is T ms .
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240153
EISBN: 978-1-62708-251-8
... Abstract This chapter examines the isothermal phase transformations of the iron-carbide system. The discussion includes the formation of ferritic, eutectoid, hypoeutectoid, hypereutectoid, bainitic, and martensitic microstructures as well as their properties, composition, and metallurgy...
Abstract
This chapter examines the isothermal phase transformations of the iron-carbide system. The discussion includes the formation of ferritic, eutectoid, hypoeutectoid, hypereutectoid, bainitic, and martensitic microstructures as well as their properties, composition, and metallurgy. The use of time-temperature-transformation (TTT) diagrams in understanding the phase transformations and the changes in the isothermal transformation curves due to the addition of carbon and other alloying elements are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400023
EISBN: 978-1-62708-258-7
... Abstract This chapter introduces the basic ferrous physical metallurgy principles that need to be understood by the metallographer. The discussion focuses on the variations in microstructures that are generated as a result of the phase transformations that occur during both heat treatment...
Abstract
This chapter introduces the basic ferrous physical metallurgy principles that need to be understood by the metallographer. The discussion focuses on the variations in microstructures that are generated as a result of the phase transformations that occur during both heat treatment (as in steels) and solidification (as in cast irons). The chapter describes how the development of the iron-carbon phase diagram, coupled with the understanding of the kinetics of phase transformations through the use of isothermal transformation diagram, were breakthroughs in the advancement of ferrous physical metallurgy. Several examples of the morphological features of microstructural constituents in steels are also presented.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560003
EISBN: 978-1-62708-353-9
... Abstract This chapter describes the two types of Time-Temperature-Transformation (TTT) diagrams used and outlines the methods of determining them. As a precursor to the examination of the decomposition of austenite, it first reviews the phases and microconstituents found in steels...
Abstract
This chapter describes the two types of Time-Temperature-Transformation (TTT) diagrams used and outlines the methods of determining them. As a precursor to the examination of the decomposition of austenite, it first reviews the phases and microconstituents found in steels. This includes a presentation of the iron-carbon phase diagram and the equilibrium phases. The chapter also covers the common microconstituents that form in steels, including the nomenclature used to describe them. The chapter provides a comparison of isothermal and continuous cooling TTT diagrams. These diagrams are affected by the carbon and alloy content and by the prior austenite grain size, and the way in which these factors affect them is examined.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900067
EISBN: 978-1-62708-358-4
... of austenite. The role that diffusion-controlled phase transformations play relative to the hardenability of high-carbon and alloy tool steels is then emphasized. It presents general considerations of transformation diagrams, Jominy curves, and the hardenability of tool steels. The factors related...
Abstract
This chapter describes how the phases are arranged into desired microstructures during the heat treatment of tool steels. It describes the microstructural changes that are the objectives of the austenitizing, quenching, and tempering steps of tool steel hardening. The chapter covers austenite composition, retained austenite, and austenite grain size and grain growth. It provides information on the hardness and hardenability of tool steel. The chapter reviews some of these concepts and describes the microstructural appearance of the products of diffusion-controlled transformation of austenite. The role that diffusion-controlled phase transformations play relative to the hardenability of high-carbon and alloy tool steels is then emphasized. It presents general considerations of transformation diagrams, Jominy curves, and the hardenability of tool steels. The factors related to the kinetics and stabilization of martensite transformation are also covered. It briefly reviews selected aspects of the changes that evolve during tempering.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220193
EISBN: 978-1-62708-259-4
... the final microstructure, and how the associated phase transformations are driven by nucleation and growth processes. It describes diffusionless and diffusive growth mechanisms and provides detailed information on the properties, structure, and behaviors of the transformation products produced, namely...
Abstract
Heat treatment is the most common way of altering the mechanical, physical, and even chemical properties of steels. This chapter describes the changes that occur in carbon and low-alloy steels during conventional heat treatments. It explains how austenite decomposition largely defines the final microstructure, and how the associated phase transformations are driven by nucleation and growth processes. It describes diffusionless and diffusive growth mechanisms and provides detailed information on the properties, structure, and behaviors of the transformation products produced, namely martensite and bainite. It also discusses the formation of austenite, the control and measurement of austenitic grain size, the characteristics of ferritic microstructures, and the methods used to classify ferrite morphology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310029
EISBN: 978-1-62708-326-3
... phase transformation, hysteresis in heating and cooling, ferrite and austenite as two crystal structures of solid iron, and the diffusion coefficient of carbon. austenite bainite carbon cementite diffusion coefficient ferrite heat treatment iron martensite microstructure pearlite phase...
Abstract
The existence of austenite and ferrite, along with carbon alloying, is fundamental in the heat treatment of steel. In view of the importance of structure and its formation to heat treatment, this chapter describes the various microstructures that form in steels, the various factors that determine the formation of microstructures during heat treatment processing of steel, and some of the characteristic properties of each of the microstructures. The discussion also covers the constitution of iron during heat treatment and the phases of heat-treated steel with elaborated information on iron phase transformation, hysteresis in heating and cooling, ferrite and austenite as two crystal structures of solid iron, and the diffusion coefficient of carbon.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290099
EISBN: 978-1-62708-306-5
... Abstract During fusion welding, the thermal cycles produced by the moving heat source causes physical state changes, metallurgical phase transformations, and transient thermal stresses and metal movement. This chapter begins by discussing weld metal solidification behavior and the solid-state...
Abstract
During fusion welding, the thermal cycles produced by the moving heat source causes physical state changes, metallurgical phase transformations, and transient thermal stresses and metal movement. This chapter begins by discussing weld metal solidification behavior and the solid-state transformations of the main classes of metals and alloys during fusion welding. The main classes include work- or strain-hardened metals and alloys, precipitation-hardened alloys, transformation-hardened steels and cast irons, stainless steels, and solid-solution and dispersion-hardened alloys. The following section provides information on the residual stresses and distortion that remain after welding. The focus then shifts to distortion control of weldments. Inclusions and cracking are discussed in detail. The chapter also discusses the causes for reduced fatigue strength of a component by a weld: stress concentration due to weld shape and joint geometry; stress concentration due to weld imperfections; and residual welding stresses. Inspection and characterization of welds are described in the final section of this chapter.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480031
EISBN: 978-1-62708-318-8
... Abstract This chapter describes the structures, phases, and phase transformations observed in metals and alloys as they solidify and cool to lower temperatures. It begins with a review of the solidification process, covering nucleation, grain growth, and the factors that influence grain...
Abstract
This chapter describes the structures, phases, and phase transformations observed in metals and alloys as they solidify and cool to lower temperatures. It begins with a review of the solidification process, covering nucleation, grain growth, and the factors that influence grain morphology. It then discusses the concept of solid solutions, the difference between substitutional and interstitial solid solubility, the effect of alloying elements, and the development of intermetallic phases. The chapter also covers the construction and use of binary and ternary phase diagrams and describes the helpful information they contain.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430027
EISBN: 978-1-62708-253-2
... Abstract This chapter describes the metallurgy, composition, and properties of steels and other alloys. It provides information on the atomic structure of metals, the nature of alloy phases, and the mechanisms involved in phase transformations, including time-temperature effects and the role...
Abstract
This chapter describes the metallurgy, composition, and properties of steels and other alloys. It provides information on the atomic structure of metals, the nature of alloy phases, and the mechanisms involved in phase transformations, including time-temperature effects and the role of diffusion, nucleation, and growth. It also discusses alloying, heat treating, and defect formation and briefly covers condenser tube materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480075
EISBN: 978-1-62708-318-8
... Abstract Titanium alloys respond well to heat treatment be it to increase strength (age hardening), reduce residual stresses, or minimize tradeoffs in ductility, machinability, and dimensional and structural stability (annealing). This chapter describes the phase transformations associated...
Abstract
Titanium alloys respond well to heat treatment be it to increase strength (age hardening), reduce residual stresses, or minimize tradeoffs in ductility, machinability, and dimensional and structural stability (annealing). This chapter describes the phase transformations associated with these processes, explaining how and why they occur and how they are typically controlled. It makes extensive use of phase diagrams and cooling curves to illustrate the effects of alloying and quenching on beta-to-alpha transformations and the conditions that produce metastable phases. It also examines several time-temperature-transformation diagrams, which account for the effect of cooling rate.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060013
EISBN: 978-1-62708-261-7
... structure of metals and their role in mechanical deformation, annealing, precipitation, and diffusion. It describes the concept of solid solutions and the effect of temperature on solubility and phase transformations. The chapter also discusses the formation of solidification structures, the use...
Abstract
This chapter introduces many of the key concepts on which metallurgy is based. It begins with an overview of the atomic nature of matter and the forces that link atoms together in crystal lattice structures. It discusses the types of imperfections (or defects) that occur in the crystal structure of metals and their role in mechanical deformation, annealing, precipitation, and diffusion. It describes the concept of solid solutions and the effect of temperature on solubility and phase transformations. The chapter also discusses the formation of solidification structures, the use of equilibrium phase diagrams, the role of enthalpy and Gibb’s free energy in chemical reactions, and a method for determining phase compositions along the solidus and liquidus lines.
1