Skip Nav Destination
Close Modal
Search Results for
Nuclear reactor components
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 123
Search Results for Nuclear reactor components
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090191
EISBN: 978-1-62708-266-2
... of approximately 2 × 10 21 n/cm 2 . Initial concern for aggressive high radiation conditions was reflected in the specification of solution-annealed materials for most light water reactor (LWR) core components. Nevertheless, IASCC was first observed in the early 1960s in fuel elements ( Ref 6.1 , 6.9...
Abstract
Irradiation-assisted stress-corrosion cracking (IASCC) has been a topic of engineering interest since it was first reported in the 1960s, having been observed in stainless steel cladding on light water reactor fuel elements. This chapter summarizes the results of decades of investigation, showing that IASCC can essentially be defined as the intergranular cracking of austenitic alloys in high-temperature water, where both the material and its environment have been altered by radiation. Of the many interactions that can occur when metals and water are exposed to radiation, the international consensus is that the three with the greatest impact on crack growth rates are the formation of material defects, radiation-induced segregation, and chemical reactions that increase the corrosion potential of water. The chapter discusses each of these in great detail, and includes information on predictive modeling as well.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230001
EISBN: 978-1-62708-298-3
... was selected as a reflector or moderator in nuclear reactors. Quantities of beryllium used in reactors ranged from a few kilograms in systems for nuclear auxiliary power devices to 1600 kg in the Advanced Test Reactor at Idaho National Laboratory. Until the cessation of nuclear weapon construction, large...
Abstract
Beryllium, despite its relatively simple atomic structure, possesses a wide range of useful engineering properties. It has the highest strength-to-weight ratio and modulus of elasticity among structural metals and is an important alloy addition in copper, nickel, and aluminum alloys. It also has excellent thermal properties, low atomic mass, a small x-ray absorption cross section, and a large neutron scattering cross section. This brief introductory chapter provides an overview of the unique qualities of beryllium along with typical applications and uses.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090359
EISBN: 978-1-62708-266-2
.... Nuclear Regulatory Commission, Office of Inspection and Enforcement, March 4 , 1983 16.3 “ Inspection of BWR Stainless Steel Piping ,” NRC Generic Letter 84-11, U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, 1984 16.4 “ Failures in 4-Inch Bypass Piping of Dresden...
Abstract
This chapter describes how ultrasonic testing came to be a viable method for evaluating intergranular stress-corrosion cracking (SCC) in large-diameter stainless steel pipe welds in boiling water reactor service. Intergranular SCC can be difficult to detect using nondestructive evaluation (NDE) techniques because of its treelike branching pattern and its location in the heat-affected zone within the weld. As the chapter explains, by optimizing excitation and reflected waveforms, switching to dual-element sensing, properly orienting the scanning path, and using crack-tip diffraction and amplitude-drop techniques, the height, length, and location of intergranular cracks can be accurately determined anywhere along the walls of the pipe as well as in weld areas.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400315
EISBN: 978-1-62708-479-6
... Abstract This chapter discusses the effect of powder metallurgy on the design and production of nuclear energy reactors, wind turbines, biomedical devices, and gas turbine engines. aircraft engines medical implants nuclear reactor components powder metallurgy wind turbines...
Abstract
This chapter discusses the effect of powder metallurgy on the design and production of nuclear energy reactors, wind turbines, biomedical devices, and gas turbine engines.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240597
EISBN: 978-1-62708-251-8
... in nuclear reactors. Beryllium is an extremely lightweight metal that, as a result of its high specific modulus, is used in high-value aerospace structures. Lead and tin form the most widely used solders, and lead is the most important of the battery materials. Gold, silver, and the platinum group are all...
Abstract
This chapter discusses the compositions, properties, and applications of nonferrous metals, including zirconium, hafnium, beryllium, lead, tin, gold, silver, and platinum group metals. It also addresses fusible alloys and provides melting temperatures for several compositions.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090349
EISBN: 978-1-62708-266-2
... designed to Section III of the ASME Boiler Code for Nuclear Power Plant Components. Using these codes, the design stresses of the piping systems were well below the material yield strength. However, the code piping stress analysis did not include allowances for intergranular SCC and residual stresses from...
Abstract
This chapter examines the stress-corrosion cracking (SCC) failure of stainless steel pipe welds in boiling water reactor (BWR) service. It explains where most of the failures have occurred and provides relevant details about the materials of construction, fabrication techniques, environmental factors, and cracking characteristics. It includes a model that accounts for the primary factors involved in intergranular SCC, namely, tensile stresses above the yield stress of the base material, a sensitized microstructure, and reactor cooling water. The chapter also provides proven remedies and mitigation techniques corresponding to a wide range of issues related to stress, sensitization, and operating conditions.
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820177
EISBN: 978-1-62708-339-3
... to the piping IGSCC concern in the United States consist primarily of replacing the susceptible types 304 and 316 stainless steels with more sensitization-resistant materials, such as types 316 and 304 nuclear grades (NG), redissolving the chromium carbides by solution heat treatment, and cladding with crack...
Abstract
This chapter reviews weld corrosion in three key application areas: petroleum refining and petrochemical operations, boiling water reactor piping systems, and components used in pulp and paper plants. The discussion of each area addresses general design and service characteristics, types of weld corrosion issues, and prevention or mitigation strategies.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090135
EISBN: 978-1-62708-266-2
... decades, they have been used increasingly in more severe oil and gas, marine, and pollution-control applications. The precipitation-hardenable nickel-base alloys, such as alloy 718 (UNS N07718), were originally developed for aerospace applications but are now being used in the nuclear and oil and gas...
Abstract
Nickel and nickel-base alloys are specified for many applications, such as oil and gas production, power generation, and chemical processing, because of their resistance to stress-corrosion cracking (SCC). Under certain conditions, however, SCC can be a concern. This chapter describes the types of environments and stress loads where nickel-base alloys are most susceptible to SCC. It begins with a review of the physical metallurgy of nickel alloys, focusing on the role of carbides and intermetallic phases. It then explains how SCC occurs in the presence of halides (such as chlorides, bromides, iodides, and fluorides), sulfur-bearing compounds (such as H2S and sulfur-oxyanions), high-temperature and supercritical water, and caustics (such as NaOH), while accounting for temperature, composition, microstructure, properties, environmental contaminants, and other factors. The chapter also discusses the effects of hydrogen embrittlement and provides information on test methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000117
EISBN: 978-1-62708-313-3
... corrosive environments and is especially resistant to pitting and crevice corrosion Inconel 690 … Resists nitric and hydrofluoric acids Inconel 718 GTE components, rocket motors, spacecraft, nuclear reactor pumps, and tooling Most widely used of all wrought superalloys. Creep rupture strength up...
Abstract
This appendix provides composition data and application-related information on a wide range of superalloys in both wrought and cast form.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030074
EISBN: 978-1-62708-282-2
... 73.0 … … 1.0 2.5 0.7 7.0 0.04 0.25 max Cu Gas turbine components, pressure vessels, applications in nuclear reactors N08811 Incoloy 800HT 21.0 32.5 … … … 0.4 0.4 46.0 0.08 0.8 Mn, 0.5 Si, 0.4 Cu Industrial furnaces, carburizing equipment N12160 Haynes HR-160 28.0 37.0...
Abstract
This chapter is dedicated mostly to the metallurgical effects on the corrosion behavior of corrosion-resistant alloys. It begins with a section describing the importance of alloying elements on the corrosion behavior of nickel alloys. The chapter considers the metallurgical effects of alloy composition for heat-resistant alloys, nickel corrosion-resistant alloys, and nickel-base alloys. This chapter also discusses the corrosion implications of changing the alloy microstructure via solid-state transformation, second-phase precipitation, or cold work. It concludes with a comparison of corrosion behavior between cast and wrought product forms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080423
EISBN: 978-1-62708-304-1
... investigated for use as coolants in nuclear reactors. Sodium, for example, has been used as a coolant in fast breeder nuclear reactors. Most corrosion studies of molten metals have been carried out in conjunction with nuclear reactor applications ( Ref 1 – 4 ). Other applications of liquid metals include heat...
Abstract
Liquid metals are frequently used as a heat-transfer medium because of their high thermal conductivities and low vapor pressures. Containment materials used in such heat-transfer systems are subject to molten metal corrosion as well as other problems. This chapter reviews the corrosion behavior of alloys in molten aluminum, zinc, lead, lithium, sodium, magnesium, mercury, cadmium, tin, antimony, and bismuth. It also discusses the problem of liquid metal embrittlement, explaining how it is caused by low-melting-point metals during brazing, welding, and heat treating operations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490329
EISBN: 978-1-62708-340-9
... Abstract This chapter covers the failure modes and mechanisms of concern in hydroprocessing reactor vessels and the methods used to assess lifetime and performance. It begins with a review of the materials used in the construction of pressure-vessel shells, the challenges they face...
Abstract
This chapter covers the failure modes and mechanisms of concern in hydroprocessing reactor vessels and the methods used to assess lifetime and performance. It begins with a review of the materials used in the construction of pressure-vessel shells, the challenges they face, and the factors that determine shell integrity. The discussion addresses key properties and design parameters including allowable stress, fracture toughness, the effect of microstructure and composition on embrittlement, high-temperature creep, and subcritical crack growth. The chapter also provides information on the factors that affect cladding integrity and ends with a section on life-assessment techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490001
EISBN: 978-1-62708-340-9
... reactions inside a nuclear reactor. It is estimated that in the United States approximately 70% of the electricity is produced in fossil power plants, 15% in nuclear power plants, 12% in hydroelectric power plants, and the remainder from other types of sources ( Ref 3 ). This mix may be somewhat different...
Abstract
The ability to accurately assess the remaining life of components is essential to the operation of plants and equipment, particularly those in service beyond their design life. This, in turn, requires a knowledge of material failure modes and a proficiency for predicting the near and long term effects of mechanical, chemical, and thermal stressors. This chapter presents a broad overview of the types of damage to which materials are exposed at high temperatures and the approaches used to estimate remaining service life. It explains how operating conditions in power plants and oil refineries can cause material-related problems such as embrittlement, creep, thermal fatigue, hot corrosion, and oxidation. It also discusses the factors and considerations involved in determining design life, defining failure criteria, and implementing remaining-life-assessment procedures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230007
EISBN: 978-1-62708-298-3
... quantities of beryllium would have been used in nuclear reactors as neutron reflector components. Since the late 1940s, all beryllium fabrication has been based on powder metallurgy. To produce full-density bodies, the beryllium powder must be heated to 1000 to 1100 °C in a die with concomitant...
Abstract
This chapter describes some of events and developments that helped drive the commercialization of beryllium and its acceptance as an engineering material. It traces the growth of the domestic beryllium industry from its origins in the 1920s to the present time, and provides a status update on the primary beryllium producers throughout the world.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550193
EISBN: 978-1-62708-307-2
...; the plasma temperature in which nuclear fusion takes place is near to 100 °C million (by comparison, the sun’s core temperature is 40 °C million). Establishing a controlled nuclear fusion reaction is the main task of the ITER project. For thermal shielding of the reactor core and withdrawing plasma heat...
Abstract
Beryllium is an extraordinary metal with an unusual combination of physical and mechanical properties. It has low density, high stiffness, and excellent dimensional stability. It is also transparent to x-rays and can be machined to extremely close tolerances. This chapter discusses the properties, compositions, and processing characteristics of beryllium and its alloys. It provides information on powder production and consolidation, commercial designations and grades, wrought products, and forming processes. It also discusses the issue of corrosion, the use of protective treatments and coatings, and health and safety concerns.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030235
EISBN: 978-1-62708-282-2
... 1560 Sulfidation, carburization, deposits Melamine production (urea) reactors 450–500 840–930 Nitriding Other processes Titanium production reactor vessels 900 1650 Oxidation, chlorination Nitric acid—catalyst grid 930 1705 Oxidation, nitriding, sulfidation Nuclear...
Abstract
This chapter focuses on various factors to be considered at design stage to minimize corrosion. It begins by providing information on design considerations and general corrosion awareness. This is followed by a description of several factors influencing materials-component failure. Details on design and materials selection, which assist in controlling corrosion, are then provided. The chapter ends with a discussion on the design factors that influence corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080409
EISBN: 978-1-62708-304-1
... industries Table 15.1 General applications of molten salt technology in several industries Industry Applications Power Solar/thermal: collection, storage, transfer Nuclear: homogeneous reactors, reprocessing Batteries Fuel cells Metals/materials Extraction: refractory...
Abstract
Containment materials used in power generating applications are subject to molten salt corrosion. This chapter reviews the data relevant to corrosion problems in molten salt environments. It describes the corrosion behavior of steel, aluminum, nickel, and titanium alloys in molten chlorides, molten nitrates, molten fluorides, molten carbonates, and molten sodium hydroxide.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090095
EISBN: 978-1-62708-266-2
... usually denotes SCC in simulated nuclear boiling water reactor (BWR) and nuclear pressurized water reactor (PWR) coolant environments. The term irradiation-assisted SCC refers to SCC in nuclear power station core components that are subjected to heavy doses of radiation within the core as well...
Abstract
This chapter takes a practical approach to the problem of stress-corrosion cracking (SCC) in stainless steels, explaining how different application environments affect different grades of stainless steel. It describes the causes of stress-corrosion cracking in chloride, caustic, polythionic acid, and high-temperature environments and the correlating effects on austenitic, ferritic, duplex, martensitic, and precipitation hardening stainless steels and nickel-base alloys. It also discusses the contributing effects of sensitization and hydrogen embrittlement and the role of composition, microstructure, and thermal history. Sensitization is particularly detrimental to austenitic stainless steels, and in many cases, eliminating it will eliminate the susceptibility to SCC. The chapter includes an extensive amount of data and illustrations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060315
EISBN: 978-1-62708-261-7
... and allows fabrication with common shop equipment. Zirconium and hafnium are used in water-cooled nuclear reactors, but they serve different functions. Zirconium allows passage of thermal neutrons, while hafnium impedes their passage. It is also used in nuclear control rods as a neutron-absorbing...
Abstract
Nonferrous metals are of commercial interest both as engineering materials and as alloying agents. This chapter addresses both roles, discussing the properties, processing characteristics, and applications of several categories of nonferrous metals, including light metals, corrosion-resistance alloys, superalloys, refractory metals, low-melting-point metals, reactive metals, precious metals, rare earth metals, and metalloids or semimetals. It also provides a brief summary on special-purpose materials, including uranium, vanadium, magnetic alloys, and thermocouple materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.9781627083409
EISBN: 978-1-62708-340-9
1