Skip Nav Destination
Close Modal
Search Results for
Molding resins
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 189
Search Results for Molding resins
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Thermoset Composite Fabrication Processes
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870119
EISBN: 978-1-62708-314-0
... for low-volume, medium-sized and larger parts. It also discusses filament winding and preforming processes (including weaving, knitting, stitching, and braiding) in addition to resin-transfer molding, resin film infusion, and pultrusion. continuous-fiber composites filament winding liquid molding...
Abstract
This chapter familiarizes readers with the many and varied thermoset composite fabrication processes and the types of applications for which they were developed. It describes wet lay-up, prepreg lay-up, and low-temperature vacuum bag curing prepreg processes, which are best suited for low-volume, medium-sized and larger parts. It also discusses filament winding and preforming processes (including weaving, knitting, stitching, and braiding) in addition to resin-transfer molding, resin film infusion, and pultrusion.
Book Chapter
Characterization of Plastics in Failure Analysis
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780359
EISBN: 978-1-62708-281-5
... of the material. Unlike metals, polymers have a molecular structure that includes characteristics such as molecular weight, crystallinity, and orientation, and this has a significant impact on the properties of the molded article. Additionally, plastic resins usually contain additives, such as reinforcing fillers...
Abstract
This article reviews various analytical techniques most commonly used in plastic component failure analysis. The description of the techniques is intended to make the reader familiar with the general principles and benefits of the methodologies. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aided in the characterization of the failures. The techniques covered include Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses various analytical methods used to characterize the molecular weight distribution of a polymeric material. It provides information on a wide range of mechanical tests that are available to evaluate plastics and polymers, covering the various considerations in the selection and use of test methods.
Image
The differential scanning calorimetry thermogram representing a molding res...
Available to Purchase
in Characterization of Plastics in Failure Analysis[1]
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Fig. 20 The differential scanning calorimetry thermogram representing a molding resin pellet that had produced brittle parts. The thermogram shows a major melting transition associated with nylon 6/12 and a weaker transition attributed to polypropylene.
More
Image
The differential scanning calorimetry thermogram representing a second mold...
Available to Purchase
in Characterization of Plastics in Failure Analysis[1]
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Fig. 21 The differential scanning calorimetry thermogram representing a second molding resin pellet that had produced brittle parts. The thermogram shows a major melting transition associated with nylon 6/12 and a weaker transition attributed to nylon 6/6.
More
Book Chapter
Examination of the Nitrided Case
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900167
EISBN: 978-1-62708-350-8
... with compression mountings and castable materials. Typical properties of thermosetting molding resins Table 1 Typical properties of thermosetting molding resins Resin Molding conditions Heat distortion temperature (a) Coefficient of thermal expansion in./in.°C Abrasion rate, μm/min (b) Polishing...
Abstract
Examining and evaluating the nitrided case is generally accomplished by hardness testing and microscopic examination. This chapter discusses both characterization methods, as well as sample preparation. The chapter also discusses the processes involved in the etching of the sample after microhardness testing and provides practices that contribute to the safe preparation of specimens. Examples of nitrided case microstructures, using optical light microscopy, are also presented.
Book Chapter
Plastics
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250077
EISBN: 978-1-62708-345-4
... for their low-shrinkage characteristics, they are manufactured by either molding or machining. Polyesters are unmodified or reinforced with glass fibers. Applications for these molded resins are similar to the nylons and acetals. Polyesters can also be blended with elastomers for extra tough gears subject...
Abstract
Plastic gears are continuing to displace metal gears in applications ranging from automotive components to office automation equipment. This chapter discusses the characteristics, classification, advantages, and disadvantages of plastics for gear applications. It provides a comparison between the properties of metals and plastics for designing gears. The chapter reviews some of the commonly used plastic materials for gear applications including thermoplastic and thermoset gear materials. The chapter also describes the processes involved in plastic gear manufacturing.
Book Chapter
Discontinuous-Fiber Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870285
EISBN: 978-1-62708-314-0
... of a continuous-fiber composite. In reality, it is extremely difficult to control the orientation in discontinuous-fiber composites. During processing, resin flow fronts push the fibers around, causing misorientation. In addition, some processes, such as injection molding, mechanically fracture the fibers...
Abstract
This chapter discusses the effect of fiber length and orientation on the strength and stiffness of discontinuous-fiber composites. It also describes several fabrication processes, including spray-up, compression molding, reaction injection molding, and injection molding.
Image
in Design and Selection of Plastics Processing Methods
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Image
Published: 01 November 2010
Image
Published: 01 November 2010
Image
Examples of resin transfer molding (RTM) carbon composite parts. Source: GK...
Available to PurchasePublished: 01 November 2010
Fig. 5.45 Examples of resin transfer molding (RTM) carbon composite parts. Source: GKN Aerospace Services
More
Image
Published: 01 November 2010
Image
Published: 01 November 2010
Image
Published: 01 November 2010
Image
Published: 01 November 2010
Image
Published: 01 October 2012
Image
Published: 01 October 2012
Book Chapter
Thermal Analysis and Thermal Properties
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780115
EISBN: 978-1-62708-281-5
... the determination of service temperature of a material. Representative examples of different types of engineering thermoplastics are discussed in terms of structure and thermal properties. The article also discusses the thermal and related properties of thermoset resin systems. engineering plastics...
Abstract
This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition, chain configuration, and/or conformation of the base polymers. The thermal analysis techniques covered are differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and rheological analysis. The basic thermal properties covered include thermal conductivity, temperature resistance, thermal expansion, specific heat, and the determination of glass-transition temperatures. The article further describes various factors influencing the determination of service temperature of a material. Representative examples of different types of engineering thermoplastics are discussed in terms of structure and thermal properties. The article also discusses the thermal and related properties of thermoset resin systems.
Book Chapter
Design and Selection of Plastics Processing Methods
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780064
EISBN: 978-1-62708-281-5
... … … y y y n n y n y y Resin transfer molding 0.1 0.015 10 1120 … … n y n y n y n n y y High-speed resin transfer molding or fast resinject 2 0.3 30 3370 … … n y n y n y n n y y Foam polyurethane 0.5 0.07 n/a … … … n y y y y y n n y y...
Abstract
This article describes key processing methods and related design, manufacturing, and application considerations for plastic parts and includes a discussion on materials and process selection methodology for plastics. The discussion covers the primary plastic processing methods and how each process influences part design and the properties of the plastic part. It also includes a brief description of functional requirements in process selection; an overview of various process effects and how they affect the functions and properties of the part; and the selection of processes for size, shape, and design detail factors.
Book Chapter
Introduction—Composite Materials and Optical Microscopy
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030001
EISBN: 978-1-62708-349-2
... tape lay-up of prepreg materials, resin transfer molding, vacuum-assisted resin transfer molding, resin film infusion, wet lay-up, filament winding, pultrusion, and compression molding of sheet molding or bulk molding compound. While these processes are general in description, the actual process...
Abstract
This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods, and dispersed-phase toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials.
1