Skip Nav Destination
Close Modal
Search Results for
Microcracking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 256 Search Results for
Microcracking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030159
EISBN: 978-1-62708-349-2
... Fig. 9.1 Microcracks in a carbon fiber composite laminate due to thermal cycling. (a) Resin-rich region in the composite. Slightly uncrossed polarized light, 10× objective. (b) Resin-rich region containing a large void. Slightly uncrossed polarized light, 10× objective Fig. 9.2...
Abstract
The formation of microcracks in composite materials may arise from static-, dynamic-, impact-, or fatigue-loading situations and also by temperature changes or thermal cycles. This chapter discusses the processes involved in the various methods for the microcrack analysis of composite materials, namely bright-field analysis, polarized-light analysis, contrast dyes analysis, and dark-field analysis. The analysis of microcracked composites using epi-fluorescence is also covered. In addition, the chapter describes the procedures for the determination and recording of microcracks in composite materials.
Image
Published: 01 November 2010
Fig. 9.13 Large-scale microcracking in a carbon fiber composite material. Epi-fluorescence, 390–440 nm excitation, 10× objective
More
Image
Published: 01 December 1999
Fig. 5.16 Microcracking in a Ni-Cr steel that also exhibits microsegregation. 1000×
More
Image
Published: 01 December 1999
Fig. 5.20 Influence of tempering on microcracking. (a) Effect of tempering temperature on the number of cracks per unit volume. (b) Effect of tempering temperature and time on S v , microcrack area per unit volume of specimen. Source: Ref 41 , 42
More
Image
Published: 01 December 2003
Fig. 8 Surface-microcracking network developed on polyoxymethylene due to ultraviolet exposure. 200×
More
Image
Published: 01 August 1999
Fig. 9.28 (Part 4) (j) Variation with austenitic grain size of the amount of microcracking in a hardened 1.2% C steel. Source: Ref 26 .
More
Image
Published: 01 August 1999
Fig. 9.29 (Part 2) (e) Variation with tempering temperature of the amount of microcracking in a 1.34% C steel water quenched after austenitizing at 1200 °C. Source: Ref 29 .
More
Image
Published: 01 November 2010
Fig. 3.1 Cross section of a polished composite showing areas of the microcracks partially filled with epoxy mounting resin. Incomplete impregnation of the mounting resin can cause edge rounding and also fill the unprotected edges with grinding and polishing debris. Unimpregnated areas
More
Image
in Viewing the Specimen Using Reflected-Light Microscopy
> Optical Microscopy of Fiber-Reinforced Composites
Published: 01 November 2010
Fig. 5.6 Microcracked nylon fiber composite dyed with Magnaflux Spotcheck SKL-H (Magnaflux Corp.) penetrant. The microcracks appear red. This technique works well for most translucent fibers. Dark-field illumination, 10× objective
More
Image
in Viewing the Specimen Using Reflected-Light Microscopy
> Optical Microscopy of Fiber-Reinforced Composites
Published: 01 November 2010
Fig. 5.10 Microcracks in a composite material that are difficult to observe using epi-bright-field illumination. (a) Bright-field illumination, 25× objective. (b) Same location viewed after applying a fluorescent penetrant dye (Magnaflux Zyglo) to the surface and back-polishing. Epi
More
Image
in Viewing the Specimen Using Reflected-Light Microscopy
> Optical Microscopy of Fiber-Reinforced Composites
Published: 01 November 2010
Fig. 5.11 Composite part containing microcracks that extend to the surfacing film, primer, and paint layers. (a) Slightly uncrossed polarized light was used to contrast the paint layer (10× objective). (b) A fluorescent penetration dye (Magnaflux Zyglo) was applied on the surface
More
Image
in Viewing the Specimen Using Reflected-Light Microscopy
> Optical Microscopy of Fiber-Reinforced Composites
Published: 01 November 2010
Fig. 5.14 Thermoplastic fiber-reinforced composite with the microcracks dyed using Magnaflux Spotcheck SKL-H. Dark-field illumination, 25× objective
More
Image
Published: 01 November 2010
Fig. 9.1 Microcracks in a carbon fiber composite laminate due to thermal cycling. (a) Resin-rich region in the composite. Slightly uncrossed polarized light, 10× objective. (b) Resin-rich region containing a large void. Slightly uncrossed polarized light, 10× objective
More
Image
Published: 01 November 2010
Fig. 9.2 Micrograph of a carbon fiber composite that microcracked during thermal cycling. Bright-field illumination, 65 mm macrophotograph
More
Image
Published: 01 November 2010
Fig. 9.3 Micrograph of a composite cross section showing a microcrack that initiated on the surface of the part. Slightly uncrossed polarized light, 10× objective
More
Image
Published: 01 November 2010
Fig. 9.4 Microcracked carbon fiber composite material illustrating the crack morphology in a fiber tow that is in the same plane as the polished surface. Bright-field illumination, 10× objective
More
Image
Published: 01 November 2010
Fig. 9.5 Area of a carbon fiber composite that shows a subsurface microcrack. Slightly uncrossed polarized light, 10× objective
More
Image
Published: 01 November 2010
Fig. 9.6 Microcracks in a glass and thermoplastic fiber hybrid composite. Red penetration dye (Magnaflux Spotcheck SKL-H, Magnaflux Corp.), dark-field illumination, 25× objective
More
1