Skip Nav Destination
Close Modal
Search Results for
Machine tools
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 646 Search Results for
Machine tools
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 November 2010
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740213
EISBN: 978-1-62708-308-9
... that can be achieved through conventional machining methods, the mechanics of chip formation, the factors that affect tool wear, the selection and use of cutting fluids, and the determination of machining parameters based on force and power requirements. It also includes information on nontraditional...
Abstract
This chapter covers the practical aspects of machining, particularly for turning, milling, drilling, and grinding operations. It begins with a discussion on machinability and its impact on quality and cost. It then describes the dimensional and surface finish tolerances that can be achieved through conventional machining methods, the mechanics of chip formation, the factors that affect tool wear, the selection and use of cutting fluids, and the determination of machining parameters based on force and power requirements. It also includes information on nontraditional machining processes such as electrical discharge, abrasive jet, and hydrodynamic machining, laser and electron beam machining, ultrasonic impact grinding, and electrical discharge wire cutting.
Image
Published: 01 September 2008
Fig. 11 Effect of carbon content on the hardness of different microstructures. Martensite hardness increases rapidly with carbon content. Reaustenitizing and quenching, which can occur in the surface of ground or electrical discharge machined tools, can cause high hardness and brittleness in high
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040107
EISBN: 978-1-62708-300-3
... with, and at times request improved performance from, the machine builder If necessary, develop in-house proprietary machines and processes not available in the machine-tool market 10.2 Interaction between Process Requirements and Forming Machines The behavior and characteristics of the forming machine...
Abstract
Forging machines vary based on factors such as the rate at which energy is applied to the workpiece and the means by which it is controlled. Each type has distinct advantages and disadvantages, depending on lot size, workpiece complexity, dimensional tolerances, and the alloy being forged. This chapter covers the most common types of forging machines, explaining how they align with basic forging processes and corresponding force, energy, throughput, and accuracy requirements.
Image
Published: 01 February 2005
Fig. 12.9 Principles of and tooling for transverse rolling machine with straight dies. (a) Operation. (b) Assembly of simple die. [ Altan et al., 1973 ]
More
Image
Published: 01 February 2005
Fig. 12.20 Forging box of a radial precision forging machine illustrating the tool function and adjustment. (a) Dies. (b) Pitman arm. (c) Guides. (d) Eccentric shaft. (e) Adjustment housing. (f) Adjustment screw. (g) Worm gear drive. (h) Adjustment input. (i) Adjustable cam. (k) Forging box
More
Image
Published: 01 February 2005
Image
Published: 01 September 2008
Fig. 21 (a) AISI O6 graphitic tool steel punch machined from centerless-ground bar stock that cracked prematurely. (b) Microstructural examination revealed an overaustenitized structure consisting of appreciable retained austenite and coarse plate martensite. (c) Failed AISI S7 jewelry striking
More
Image
Published: 01 November 2010
Fig. 4.12 Manufacturing sequence for large NC machined steel bond tool. NC, numerical control. Source: The Boeing Company
More
Image
Published: 01 November 2013
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120079
EISBN: 978-1-62708-269-3
... fluids, affect tool life, surface finish, and part tolerances. The chapter also includes a brief review of nontraditional machining methods. cutting fluids cutting speed cutting tools machinability titanium alloys The term machining has broad application and refers to all types of metal...
Abstract
This chapter discusses the factors that influence the cost and complexity of machining titanium alloys. It explains how titanium compares to other metals in terms of cutting force and power requirements and how these forces, along with cutting speeds and the use of cutting fluids, affect tool life, surface finish, and part tolerances. The chapter also includes a brief review of nontraditional machining methods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040001
EISBN: 978-1-62708-300-3
... tools of limited capability is used to achieve these tolerances. There are, however, processes and machine tools of inherently greater accuracy and better surface finish. Thus, higher-quality products can be obtained with little extra cost and, if the application justifies it, certainly with greater...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200140
EISBN: 978-1-62708-354-6
...Abstract Abstract This chapter focuses on engineering drawings for casting production, providing information on machining and casting drawings and machining and tooling references. machining mechanical design part specifications and drawings tolerances tooling Machining and Casting...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480293
EISBN: 978-1-62708-318-8
... be used. It describes the basic machining requirements for titanium in terms of tool geometry and materials, machine setup rigidity, cutting speeds and feed rates, and surface conditions, and explains how the requirements are met in practice in milling, turning, drilling, surface grinding, and broaching...
Abstract
This chapter familiarizes readers with the machining characteristics of titanium and the implementation of machining and shaping processes. It explains why titanium alloys are more difficult to machine than other metals and how it impacts the equipment and procedures that can be used. It describes the basic machining requirements for titanium in terms of tool geometry and materials, machine setup rigidity, cutting speeds and feed rates, and surface conditions, and explains how the requirements are met in practice in milling, turning, drilling, surface grinding, and broaching operations. The chapter also covers chemical and electrochemical machining processes as well as flame cutting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720049
EISBN: 978-1-62708-305-8
... cells, machining centers, and flexible transfer lines. Important terminology for CMMs includes: Ball bar: A gage consisting of two highly spherical tooling balls of the same diameter connected by a rigid bar Gage: A mechanical artifact of high precision used either for checking a part...
Abstract
The coordinate measuring machine (CMM) is used for three-dimensional inspection of both in-process and finished parts. This chapter provides a detailed account of the operating principles, measurement techniques, capabilities, and applications of CMMs. The types of CMMs are described. Vertical CMMs include cantilever-type, bridge-type, and gantry CMMs; horizontal CMMs, such as the horizontal-arm type, are also covered. The CMM application for geometric measurement, contour measurement, and specialized surface measurement are discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200377
EISBN: 978-1-62708-354-6
... effects. The chapter also presents an overview of machining practices. drilling face milling hardness machinability microstructure steel castings turning Definitions and Criteria Machinability is a term used to indicate the relative ease with which a material is shaped by cutting tools...
Abstract
This chapter presents the factors affecting machinability. It provides a detailed discussion on the machining of steel castings. These include microstructure effects, hardness and strength effects, turning, face milling and drilling, casting surface effects, and weld area effects. The chapter also presents an overview of machining practices.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040319
EISBN: 978-1-62708-300-3
... part of the manufacturing sequence of precision parts. The use of electrical discharge machining (EDM) and wire EDM machines in manufacturing cold forging dies has considerably improved the accuracy of forging dies. Elastic deflection of the press and tools: When the forming load is applied...
Abstract
This chapter defines near-net shape forging as the process of forging parts close to their final dimensions such that little machining or only grinding is required as a final step. It then describes the causes of dimensional variations in forging, including die deflection, press deflection, and process inconsistencies, and discusses related innovations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320063
EISBN: 978-1-62708-332-4
... line because their accuracy will be affected by the potential mold shift between the two halves. Casting machine operators and tooling maintenance operators must pay particular attention to ensure that the locators are not damaged on the tooling. Casting finishers must pay attention to ensure...
Abstract
The casting engineer contributes to a successful component design by offering expertise in molding, core making, and material characteristics and by recommending the most suitable casting process to use to meet quality and cost targets. The casting engineer's responsibilities include recommending locator positioning; advising about lugs, hooks, or holes for casting handling through all processes; determining the choice of a parting plane and pouring orientation; designing cores for accurate positioning, suitable venting, and proper cleaning; guiding decisions about wall thicknesses and junctions; making suggestions about casting design to eliminate distortion; optimizing the gating design for slag-free metal; and establishing the feeding techniques to eliminate shrink porosity. This chapter provides the guidelines for these responsibilities. In addition, the guidelines for the use of chaplets and chills in cast iron castings; guidelines for drafts, machine stock, tolerances, and contraction or shrink rule; and guidelines for pattern layouts and nesting are also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280189
EISBN: 978-1-62708-267-9
...Abstract Abstract The qualities that make superalloys excellent engineering materials also make them difficult to machine. This chapter discusses the challenges involved in machining superalloys and the factors that determine machinability. It addresses material removal rates, cutting tool...
Abstract
The qualities that make superalloys excellent engineering materials also make them difficult to machine. This chapter discusses the challenges involved in machining superalloys and the factors that determine machinability. It addresses material removal rates, cutting tool materials, tool life, and practical issues such as set up time, tool changes, and production scheduling. It describes several machining processes, including turning, boring, planing, trepanning, shaping, broaching, drilling, tapping, thread milling, and grinding. It also provides information on toolholders, fixturing, cutting and grinding fluids, and tooling modifications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310181
EISBN: 978-1-62708-286-0
... information on high-speed tool steel and carbide tooling, along with tool coatings and coolants applicable to stainless steel. machinability stainless steel machining high-speed steel carbide tooling coolants tool coatings Summary MACHINING STAINLESS STEELS is a complex operation. Not only...
Abstract
This chapter focuses on the metallurgical factors governing the machinability of stainless steels. It begins by describing the chemistry, cleanliness, structure, processing history, and the cross-section size of the stock of the different grades of stainless steel. This is followed by a general description of the machining behavior of the stainless steel families, namely ferritic, martensitic, austenitic, precipitation hardening, duplex, and super stainless steels. The beneficial effect of controlled inclusions is then discussed. The chapter ends with a section providing information on high-speed tool steel and carbide tooling, along with tool coatings and coolants applicable to stainless steel.