Skip Nav Destination
Close Modal
Search Results for
Jominy end quench method
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 57 Search Results for
Jominy end quench method
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 September 2005
Fig. 5 Jominy end-quench apparatus (a) and method for presenting end-quench hardenability data (b). Source: Ref 2
More
Image
Published: 01 August 2015
Fig. 5.6 Standard end-quench (Jominy) test specimen and method of quenching in quenching jig. Source: Ref 2
More
Image
Published: 01 March 2006
Fig. 18 Standard end-quench (Jominy) test specimen and method of quenching in quenching jig. Source: Ref 9
More
Image
Published: 01 January 2015
Fig. 16.23 Method of plotting hardness data from an end-quenched Jominy specimen. Source: Ref 16.21
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310079
EISBN: 978-1-62708-326-3
..., and martensite during quenching. Consequently, hardenability is best assessed by determining the hardening response in a way that determines hardness for a variety of cooling rates in a reproducible fashion. Several test methods have been used, but the Jominy end-quench test is a relatively simple test that has...
Abstract
The hardenability of steel is governed almost entirely by the chemical composition (carbon and alloy content) at the austenitizing temperature and the austenite grain size at the moment of quenching. This article introduces the methods to evaluate hardenability and the factors that influence steel hardenability and selection. The discussion covers processes involved in Jominy end-quench test for evaluating hardenability. The effect of carbon on hardenability data and the effect of alloys on hardenability during quenching and on the tempering response (after hardening) are also discussed. In addition, the article provides information on the hardenability limits of H-steels after a note on hardenability correlation curves and Jominy equivalence charts.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560043
EISBN: 978-1-62708-353-9
... the quenched end of the Jominy bar was all martensite, and they subtracted the difference in hardness of the curves in Fig. 3-22 from this value to locate the position of 50% martensite. They then used the curve in Fig. 3-21 to obtain D i . Their method is illustrated in Fig. 3-23 . The procedure...
Abstract
The crux of this chapter is to develop a method to quantitatively define hardenability. The chapter includes the empirical methods to estimate the hardenability knowing the chemical composition, describes prior austenite grain size, and examines their utility. It then reviews the Jominy end-quench test and explains its relation to hardenability. The chapter outlines the concepts of the critical diameter and the ideal critical diameter, leading to establishing a quantitative measure of hardenability. Next, it examines methods that have been developed which allow estimation of the ideal critical diameter from the chemical composition and the austenite grain size. The chapter reviews the methods which allow calculation of the Jominy curve from a value of the ideal critical diameter. Additionally, it describes the selection and application of H-band steels. Finally, the chapter describes the effect of boron on the hardenability of steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560365
EISBN: 978-1-62708-353-9
...) Cooling curves at the center, midway and surface of one inch diameter steel cylinders quenched into oil and water Fig. 10-9(c) Illustration of method to find value of severity of quench H from cooling curves in Fig. 10-9(b) Fig. 10-10 (a) Jominy curve band for 5055H steel. (b...
Abstract
This chapter contains problems that illustrate the calculation or determination of such items as ideal critical diameter, the Jominy curve, and the severity of quench by methods. It presents solutions for the calculation of the effect of prior austenite grain size, carbon content, chromium content, and molybdenum content on ideal critical diameter. The chapter also contains solutions for calculation of Jominy curves and determination of minimum hardness of quenched steels, tempered hardness, ideal critical diameter, severity of quench, heat treatment, and effect of tempering during heat-up to tempering temperature.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140083
EISBN: 978-1-62708-264-8
... discusses the effect of grain size and alloying elements and explains how Jominy end quench testing is used to evaluate the hardenability of steel. continuous transformation diagram hardenability hardness isothermal transformation diagram Jominy test steel THE PROFESSIONAL materials...
Abstract
This chapter addresses the concept of hardenability by first describing the basic hardening process for steel, starting with austenitization followed by quenching and tempering. The context also serves to clarify the difference between hardenability and hardness, which are often confused. Most of the information in the chapter is of a practical nature, covering application-oriented topics such as isothermal transformation (IT) and continuous transformation (CT) diagrams which are used to predict and control the rate of formation of ferrite, pearlite, and bainite. The chapter also discusses the effect of grain size and alloying elements and explains how Jominy end quench testing is used to evaluate the hardenability of steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560087
EISBN: 978-1-62708-353-9
... Determination of the Severity of Quench The Heat Transfer Process During Quenching The Severity of Quench H Calculation of Hardness Distribution in Cylinders Correlation of the Cooling Rate of Cylinders and Plates with that in the Jominy Bar Methods of Determining Cooling Rates in Quenched Steel...
Abstract
This chapter examines the cooling of steels from the austenite region. It describes the processes of determining the severity of quench. The chapter examines the methods to estimate the quench required if the size and shape of the part are known and the required cooling rate is known. The cooling rate correlation is used to calculate the hardness distribution across the diameter of cylinders. The calculations are used to illustrate the sensitivity of the hardness distribution to the severity of quench and the hardenability. The chapter discusses the methods of determining cooling rates in quenched steel components. It describes the formation of residual stresses in materials in which no phase change occurs on cooling. The chapter also examines the effect on the residual stresses of the phase changes in austenite. It provides information on two types of quench cracks in quenched steels, namely, microcracking and gross cracking during quenching.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.9781627083263
EISBN: 978-1-62708-326-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410335
EISBN: 978-1-62708-265-5
.... Fig. 16.22 Jominy-Boegehold specimen for end-quench test for hardenability. Source: Ref 16.16 Fig. 16.23 Method of plotting hardness data from an end-quenched Jominy specimen. Source: Ref 16.21 Fig. 16.24 Results of end-quench tests for four different grades of alloy steels...
Abstract
The properties of martensite and the mechanisms that govern its formation are the key to understanding hardness and the hardenability of carbon steel. Martensite is a transformation product of austenite that requires rapid cooling to suppress diffusion-dependent transformation pathways. This chapter describes the conditions that must be met for martensite to form. It discusses the role of quenching and the factors that affect cooling rate, including heat transfer, thermal diffusivity, emissivity, and section size. It defines hardenability and explains how to quantify it using the Grossmann-Bain approach or Jominy end-quench testing. It also explains how hardenability can be improved through the addition of boron, phosphorus, and other alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200327
EISBN: 978-1-62708-354-6
... carbon in steel and proportion of martensite formed at a given temperature. ( 2 ) The most common method of hardening steel involves quenching from the austenitizing solutioning temperature in a liquid medium that rapidly extracts heat. The rate of cooling in the part depends on the heat removal...
Abstract
This chapter describes the processes involved in heat treatment of carbon and low alloy steel, high strength low alloy steels, austenitic manganese steels, martensitic stainless steels, and austenitic stainless steels. In addition, precipitation hardening and quench hardening of carbon steel is also covered.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410197
EISBN: 978-1-62708-265-5
... of Fig. 10.3 is a Jominy specimen. The latter specimen is water quenched only at one end, and therefore, the cooling rate is a maximum at that end and drops with increasing distance into the specimen. The cooling rates at various locations of a Jominy specimen have been measured by attachment...
Abstract
Isothermal and continuous cooling transformation (CT) diagrams help users map out diffusion-controlled phase transformations of austenite to various mixtures of ferrite and cementite. This chapter discusses the application as well as limitations of these engineering tools in the context of heat treating eutectoid, hypoeutectoid, and proeutectoid steels. It also provides references to large collections of transformation diagrams and includes several diagrams that plot quenching and hardening transformations as a function of bar diameter.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220273
EISBN: 978-1-62708-259-4
... dimensions, and on the quenching medium selected. A = austenite, F = ferrite, B = bainite, M = martensite. Two important methods have been established to measure and quantify steel hardenability: the Jominy method ( Ref 22 ) and the Grossmann critical diameter method ( Ref 20 ). The Jominy method...
Abstract
This chapter provides a practical understanding of heat treatments and how to employ them to optimize the properties and structures of cast irons and steels. It discusses annealing, normalizing, quenching, tempering, patenting, carburizing, nitriding, carbonitriding, and nitrocarburizing. It describes the primary objectives of each treatment along with processing sequences, process parameters, and related phase transformations. The chapter contains more than 100 images, including time-temperature diagrams, transformation curves, data plots, and detailed micro- and macrographs. It also discusses the concepts of hardenability, critical diameter, quench severity, and Jominy testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440027
EISBN: 978-1-62708-262-4
... by this procedure, use of a larger round is necessary. End-Quench Testing While the simple test just described and several other hardenability tests are commonly used, the end-quench test (Jominy) is by far the most generally accepted and widely used method for evaluating the hardenability of carbon...
Abstract
This chapter discusses the general principles of measuring hardness and hardenability of steel. The discussion begins by defining hardness and exploring the history of hardness testing. This is followed by a discussion on the principles, applications, advantages, and disadvantages of commonly used hardness testing systems: the Brinell, Rockwell, Vickers, Scleroscope, and various microhardness testers that employ Vickers or Knoop indenters. The effect of carbon content on annealed steels and hardened steels is then discussed. A brief discussion on the concept of the ideal critical diameter and austenitic grain size of steels is also provided to understand how one can calculate and quantify hardenability. The processes involved in various methods for evaluating hardenability are reviewed, discussing the effect of alloying elements on hardenability.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.9781627083539
EISBN: 978-1-62708-353-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240177
EISBN: 978-1-62708-251-8
... reduced. Fig. 11.12 Comparison of different quench media 11.5.4 Hardenability Hardenability is the depth from the steel surface to which martensite can be produced by a given heat treatment. Hardenability can be quantitatively defined by several methods. The Jominy end-quench test is one...
Abstract
One of the primary advantages of steels is their ability to attain high strengths through heat treatment while still retaining some degree of ductility. Heat treatments can be used to not only harden steels but also to provide other useful combinations of properties, such as ductility, formability, and machinability. This chapter discusses various heat treatment processes, namely annealing, stress relieving, normalizing, spheroidizing, and hardening by austenitizing, quenching and tempering. It also discusses two types of interrupted quenching processes: martempering and austempering. The chapter concludes with a brief section on temper embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310055
EISBN: 978-1-62708-326-3
... of the 1038 carbon steel ( Fig. 7a ), while the alloy steel ( Fig. 7b ) would have 100% martensite in bar diameter up to approximately 1 mm (0.04 in.) with air cooling. Hardenability is thus apparent in CCT diagrams and related to the cooling rates on Jominy end-quench test specimens ( Fig. 8 ). Positions...
Abstract
The decomposition of austenite, during controlled cooling or quenching, produces a wide variety of microstructures in response to such factors as steel composition, temperature of transformation, and cooling rate. This chapter provides a detailed discussion on the isothermal transformation and continuous cooling transformation diagrams that characterize the conditions that produce the various microstructures. It discusses the mechanism and process variables of quenching of steel, explaining the factors involved in the mechanism of quenching. In addition, the chapter provides information on the causes and characteristics of residual stresses, distortion, and quench cracking of steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320033
EISBN: 978-1-62708-347-8
... Fig. 5.16 Core hardness vs. bending fatigue strength of gear tooth Fig. 5.14 Measurement locations of case and core hardnesses Fig. 5.13 Estimation of total case depth Fig. 5.6 Some typical Jominy curves showing end-quench hardenability. Courtesy: Darle Dudley...
Abstract
The primary objective of carburizing and hardening gears is to secure a hard case and a relatively soft but tough core. For this process, low-carbon steels (up to a maximum of approximately 0.30% carbon), either with or without alloying elements (nickel, chromium, manganese, molybdenum), normally are used. The processes involved in hardening, tempering, recarburizing, and cold treatment of carburized and quenched gears are discussed. Next, the chapter reviews the selection of materials for carburized gears and considerations related to carbon content, core hardness, and microstructure. This is followed by sections discussing some problems that can be experienced in the carburizing process and how these can be addressed, including a section on shot peening to induce compressive residual stress at and below the surface. It then discusses the applications of carburized gears and finally presents a case history of distortion control of carburized and hardened gears.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130417
EISBN: 978-1-62708-284-6
... and less on the type and content of alloying elements in heat treatment and surface-hardening steels. The variation of residual stresses in the surface layer can be modified by varying the induction-heating conditions and by a quenching method. Induction surface hardening creates very desirable...
Abstract
Induction heating, in most applications, is used to selectively heat only a portion of the workpiece that requires treatment. This chapter covers the basic principles, features, and metallurgical aspects of induction heating. The discussion includes the conditions required for induction heating and quenching, the use of magnetic flux concentrators to improve the efficiency of surface heating, and the quenching systems used for induction hardening. The discussion also provides information on time-temperature dependence in induction heating, workpiece distortion in induction surface hardening, residual stresses after induction surface hardening and finish grinding, and input and output control of steel for induction surface hardening of gears.