Skip Nav Destination
Close Modal
Search Results for
Intergranular precipitation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 299 Search Results for
Intergranular precipitation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 July 2000
Fig. 7.51 Interface profile of intergranular corrosion when the precipitate phase is anodic to the matrix phase. (a) Preferential corrosion of continuous AB 2 phase. (b) Preferential corrosion of discontinuous DE 3 phase
More
Image
Published: 01 July 2000
Fig. 7.52 Interface profile of intergranular corrosion when solute-depleted zone is anodic to precipitate and undepleted matrix. (a) Intergranular attack when precipitate and solute-depleted zone is continuous. (b) Intergranular attack when precipitate and depleted zones are discontinuous
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030062
EISBN: 978-1-62708-282-2
... of the carbides depletes the matrix of chromium adjacent to the grain boundary. The diffusion rate of chromium in austenite is slow at the precipitation temperatures; therefore, the depleted zone persists, and the alloy is sensitized to intergranular corrosion. This sensitization occurs because the depleted zones...
Abstract
This chapter is dedicated mostly to the metallurgical effects on the corrosion behavior of corrosion-resistant alloys. It begins with a section describing the importance of alloying elements on the corrosion behavior of nickel alloys. The chapter considers the metallurgical effects of alloy composition for heat-resistant alloys, nickel corrosion-resistant alloys, and nickel-base alloys. This chapter also discusses the corrosion implications of changing the alloy microstructure via solid-state transformation, second-phase precipitation, or cold work. It concludes with a comparison of corrosion behavior between cast and wrought product forms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870063
EISBN: 978-1-62708-299-0
... and 7 xxx alloys) and is often related to copper depleted regions or to anodic precipitates at the grain boundary region. Because corrosion is limited to the immediate grain boundary region, IGC is difficult to detect without the aid of a microscope. Intergranular corrosion penetrates more quickly than...
Abstract
This chapter describes the mechanisms, characteristics, and prevention of intergranular and exfoliation corrosion in various aluminum alloys. It discusses susceptible alloys and recommended tempers and presents several examples of exfoliation in aircraft components. It also explains how the two forms of corrosion are related to stress-corrosion cracking.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280135
EISBN: 978-1-62708-267-9
... objectives of quenching, annealing, and aging along with the associated risks of surface damage caused by oxidation, carbon pickup, alloy depletion, intergranular attack, and environmental contaminants. It also discusses heat treatment atmospheres, furnace and fixturing requirements, and practical...
Abstract
All superalloys, whether precipitation hardened or not, are heated at some point in their production for a subsequent processing step or, as needed, to alter their microstructure. This chapter discusses the changes that occur in superalloys during heat treatment and the many reasons such changes are required. It describes several types of treatments, including stress relieving, in-process annealing, full annealing, solution annealing, coating diffusion, and precipitation hardening. It discusses the temperatures, holding times, and heating and cooling rates necessary to achieve the desired objectives of quenching, annealing, and aging along with the associated risks of surface damage caused by oxidation, carbon pickup, alloy depletion, intergranular attack, and environmental contaminants. It also discusses heat treatment atmospheres, furnace and fixturing requirements, and practical considerations, including heating and cooling rates for wrought and cast superalloys and combined treatments such as solution annealing and vacuum brazing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270067
EISBN: 978-1-62708-301-0
... the leading edge was discolored due to oxidation and exposure to high temperatures. Fig. CH2.1 Photograph of the failed LPTR blade Fig. CH2.2 Photograph of the LPTR blade showing (a) entire fracture surface and (b) intergranular fracture features at the crack origin Testing Procedure...
Abstract
A low-pressure turbine rotor blade failed in service, causing extensive engine damage. A section of the blade broke off around 25 mm from the root platform, producing a flat fracture surface that appeared smooth on one end and grainy elsewhere. Based on their examination, investigators concluded that the nickel-base superalloy blade was exposed to high temperatures and stresses, initiating a crack that propagated under cyclic loading. This chapter provides a summary of the investigation and the insights acquired using scanning electron fractography, metallography, and hardness measurements.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240265
EISBN: 978-1-62708-251-8
... fracture, namely, rupture, transgranular fracture, and intergranular fracture. The next section focuses on some of the metallurgical instabilities caused by overaging, intermetallic phase precipitation, and carbide reactions. Subsequent sections address creep life prediction and creep-fatigue interaction...
Abstract
Creep occurs in any metal or alloy at a temperature where atoms become sufficiently mobile to allow the time-dependent rearrangement of structure. This chapter begins with a section on creep curves, covering the three distinct stages: primary, secondary, and tertiary. It then provides information on the stress-rupture test used to measure the time it takes for a metal to fail at a given stress at elevated temperature. The major classes of creep mechanism, namely Nabarro-Herring creep and Coble creep, are then covered. The chapter also provides information on three primary modes of elevated fracture, namely, rupture, transgranular fracture, and intergranular fracture. The next section focuses on some of the metallurgical instabilities caused by overaging, intermetallic phase precipitation, and carbide reactions. Subsequent sections address creep life prediction and creep-fatigue interaction and the approaches to design against creep.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220551
EISBN: 978-1-62708-259-4
... (duplex), and precipitation hardening stainless steels. It also describes solidification sequences and explains how chromium carbides may segregate to grain boundaries at certain temperatures, making grain boundary regions susceptible to intercrystalline or intergranular corrosion. austenitic...
Abstract
Steels with chromium contents above 12% show high resistance to oxidation and corrosion and are generally designated as stainless steels. This chapter discusses the compositions, microstructures, heat treatments, and properties of martensitic, ferritic, austenitic, ferritic-austenitic (duplex), and precipitation hardening stainless steels. It also describes solidification sequences and explains how chromium carbides may segregate to grain boundaries at certain temperatures, making grain boundary regions susceptible to intercrystalline or intergranular corrosion.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820043
EISBN: 978-1-62708-339-3
... discusses general types of corrosive attack and their effects on service integrity as well as detection and control measures. The five corrosive attack mechanisms covered are intergranular corrosion, preferential attack associated with weld metal precipitates, pitting and crevice corrosion, stress-corrosion...
Abstract
Austenitic stainless steels exhibit a single-phase, face-centered cubic structure that is maintained over a wide range of temperatures. This chapter provides a basic understanding of grade designations, properties, and welding considerations of austenitic stainless steels. It also discusses general types of corrosive attack and their effects on service integrity as well as detection and control measures. The five corrosive attack mechanisms covered are intergranular corrosion, preferential attack associated with weld metal precipitates, pitting and crevice corrosion, stress-corrosion cracking, and microbiologically influenced corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000203
EISBN: 978-1-62708-312-6
... Stainless Steel Fig. 36 As-polished microstructure of corrosion tested 434L, showing intergranular type of corrosion attack in a salt spray test, caused by depletion of chromium along grain boundaries. Carbon content was 0.07%. Sintering was carried out at 1315 °C (2400 °F) in 100% hydrogen...
Abstract
This atlas contains images showing how sintering conditions (time, temperature, and atmosphere) and compaction pressure affect the microstructure of different types of stainless steel. It also includes images of stainless steel powders, fracture surfaces, and test specimens characterized by the presence of compounds, such as oxides, carbides, and nitrides, and various forms of corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790185
EISBN: 978-1-62708-356-0
.... On the other hand, the austenitic alloys were considerably more expensive than the martensitic and ferritic grades and were susceptible to intergranular corrosion and stress-corrosion cracking. Fig. 39 Microstructure of a martensitic stainless steel (type 410; UNS number S41000). (a) Annealed. (b...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090135
EISBN: 978-1-62708-266-2
... processing, heat treatment, fabrication, and service. They are usually intergranular, although in extreme cases precipitation inside the grains along slip lines and twin boundaries may occur. The amount of precipitation depends on the concentration of carbon in solution, the stability of the alloy, time...
Abstract
Nickel and nickel-base alloys are specified for many applications, such as oil and gas production, power generation, and chemical processing, because of their resistance to stress-corrosion cracking (SCC). Under certain conditions, however, SCC can be a concern. This chapter describes the types of environments and stress loads where nickel-base alloys are most susceptible to SCC. It begins with a review of the physical metallurgy of nickel alloys, focusing on the role of carbides and intermetallic phases. It then explains how SCC occurs in the presence of halides (such as chlorides, bromides, iodides, and fluorides), sulfur-bearing compounds (such as H2S and sulfur-oxyanions), high-temperature and supercritical water, and caustics (such as NaOH), while accounting for temperature, composition, microstructure, properties, environmental contaminants, and other factors. The chapter also discusses the effects of hydrogen embrittlement and provides information on test methods.
Image
Published: 01 July 2000
Fig. 7.50 Schematic representation of microstructures susceptible to intergranular corrosion. (a) Continuous precipitation of B-rich AB 2 . (b) Discontinuous precipitation of E-rich DE 3
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030070
EISBN: 978-1-62708-282-2
... constituents in 2 xxx alloys. The constituent particles play a predominant role in pitting corrosion. In the second general category are effects from precipitation of secondary phases, usually as a result of a controlled thermal process such as age hardening. This includes both intergranular and intragranular...
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820077
EISBN: 978-1-62708-339-3
... stainless steels (see Chapter 3 for a discussion of intergranular corrosion in austenitic grades). Chromium compounds precipitate at grain boundaries, and this causes chromium depletion in the grains immediately adjacent to the boundaries ( Ref 15 , 16 ). This lowering of the chromium content leads...
Abstract
Ferritic stainless steels are essentially iron-chromium alloys with body-centered cubic crystal structures. Chromium content is usually in the range of 11 to 30%. The primary advantage of the ferritic stainless steels, and in particular the high-chromium, high-molybdenum grades, is their excellent stress-corrosion cracking resistance and good resistance to pitting and crevice corrosion in chloride environments. This chapter provides information on the classifications, properties, and general welding considerations of ferritic stainless steels. The emphasis is placed on intergranular corrosion, which is the most common cause of failure in ferritic stainless steel weldments. Two case histories involving intergranular corrosion failures of ferritic stainless steel weldments are included. A brief discussion on hydrogen embrittlement is also provided.
Image
Published: 01 August 1999
matrix form a strong galvanic cell with a potential difference of about 0.12 V. Furthermore, the anodic copper-depleted zone is small in area compared with the area of the cathodic grain matrix, resulting in a high driving force for rapid intergranular corrosion. Source: Ref 1
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270130
EISBN: 978-1-62708-301-0
.... Discussion The network of intergranular cracks seen under the SEM and the branching cracks seen under the optical microscope clearly indicate SCC. Martensitic and precipitation hardening steels as a class are susceptible to SCC under a wide range of environmental conditions, and cracking is known...
Abstract
An aircraft crashed following the loss of yaw control in full airborne flight. The subsequent discovery of broken shutter bolts in the rear pitch reaction control valve led to an inspection campaign that found bolt failures of a similar nature in valves on several other aircraft. The bolts were removed and analyzed to determine the mode and cause of failure. Based on the results of macroscopy, scanning electron fractography, metallographic examination, and chemical analysis, the failures were caused by stress corrosion cracking, and in one case, overtightening.
Image
Published: 01 September 2008
specimens (for the initial condition—as-received) by scanning electron microscopy. Note the strong increase in toughness after new heat treating, indicating the deleterious effect of carbide precipitation on grain boundaries, producing intergranular failure in impact specimens. Courtesy of Villares Metals
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610415
EISBN: 978-1-62708-303-4
.... For example, precipitation-hardened alloys may undergo overaging, with a resulting strength loss. Oxidation and intergranular attack can occur. Creep occurs in any metal or alloy at a temperature where atoms become sufficiently mobile to allow the time-dependent rearrangement of structure. Because...
Abstract
This chapter compares and contrasts the high-temperature behaviors of metals and composites. It describes the use of creep curves and stress-rupture testing along with the underlying mechanisms in creep deformation and elevated-temperature fracture. It also discusses creep-life prediction and related design methods and some of the factors involved in high-temperature fatigue, including creep-fatigue interaction and thermomechanical damage.
Image
Published: 01 November 2007
Fig. 13.21 Start times versus temperature for both K 1 precipitation and intergranular corrosion
More
1