Skip Nav Destination
Close Modal
Search Results for
Hydrogen damage and embrittlement
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 247 Search Results for
Hydrogen damage and embrittlement
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910099
EISBN: 978-1-62708-250-1
..., and hydrogen damage (including hydrogen embrittlement, hydrogen-induced blistering, high-temperature hydrogen attack, and hydride formation) Although these forms are presented in the context of aqueous corrosion, many of them are also operative at high temperature. For example, high-temperature corrosion...
Abstract
Corrosion problems can be divided into eight categories based on the appearance of the corrosion damage or the mechanism of attack: uniform or general corrosion; pitting corrosion; crevice corrosion, including corrosion under tubercles or deposits, filiform corrosion, and poultice corrosion; galvanic corrosion; erosion-corrosion, including cavitation erosion and fretting corrosion; intergranular corrosion, including sensitization and exfoliation; dealloying; environmentally assisted cracking, including stress-corrosion cracking, corrosion fatigue, and hydrogen damage (including hydrogen embrittlement, hydrogen-induced blistering, high-temperature hydrogen attack, and hydride formation). All these forms are addressed in this chapter in the context of aqueous corrosion. For each form, a general description is provided along with information on the causes and the list of metals that can be affected, with particular emphasis on the recognition and prevention measures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030148
EISBN: 978-1-62708-282-2
..., and hydride formation. Although many other theories have been presented, most are variations on these basic models. Pressure Theory The pressure theory of hydrogen damage, or more specifically, hydrogen embrittlement, is one of the oldest models for hydrogen damage ( Ref 2 ). This theory attributes...
Abstract
Hydrogen damage is a form of environmentally assisted failure that results most often from the combined action of hydrogen and residual or applied tensile stress. This chapter classifies the various forms of hydrogen damage, summarizes the various theories that seek to explain hydrogen damage, and reviews hydrogen degradation in specific ferrous and nonferrous alloys. The preeminent theories for hydrogen damage are based on pressure, surface adsorption, decohesion, enhanced plastic flow, hydrogen attack, and hydride formation. The specific alloys covered are iron-base, nickel, aluminum, copper, titanium, zirconium, vanadium, niobium, and tantalum alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540047
EISBN: 978-1-62708-309-6
... and stress rupture, stress corrosion, and hydrogen embrittlement. brittle fracture ductile fracture ductility residual stress stress-strain curve THE THREE TYPES OF IDEAL SUBSTANCES (as discussed in Chapter 1 ) are the Hooke solid, the St. Venant solid, and the Newtonian liquid. Under load...
Abstract
This chapter examines the phenomena of deformation and fracture in metals, providing readers with an understanding of why it occurs and how it can be prevented. It begins with a detailed review of tension and compression stress-strain curves, explaining how they are produced and what they reveal about the load-carrying characteristics of engineering materials. It then discusses the use of failure criteria and the determination of yielding and fracture limits. It goes on to describe the mechanisms and appearances of brittle and ductile fractures and stress rupture, providing detailed images, diagrams, and explanations. It discusses the various factors that influence strength and ductility, including grain size, loading rate, and temperature. It also provides information on the origin of residual stresses, the concept of toughness, and the damage mechanisms associated with creep and stress rupture, stress corrosion, and hydrogen embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490329
EISBN: 978-1-62708-340-9
... embrittlement, hydrogen embrittlement, hydrogen attack, and creep embrittlement. Excellent reviews of materials problems in the refinery industry ( Ref 4 to 8 ) and potential problems in coal conversion ( Ref 9 to 11 ) have been published in the literature. This chapter will draw heavily upon...
Abstract
This chapter covers the failure modes and mechanisms of concern in hydroprocessing reactor vessels and the methods used to assess lifetime and performance. It begins with a review of the materials used in the construction of pressure-vessel shells, the challenges they face, and the factors that determine shell integrity. The discussion addresses key properties and design parameters including allowable stress, fracture toughness, the effect of microstructure and composition on embrittlement, high-temperature creep, and subcritical crack growth. The chapter also provides information on the factors that affect cladding integrity and ends with a section on life-assessment techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270113
EISBN: 978-1-62708-301-0
... fractured at Scanning Electron Fractography the tack welded joint on both the port side and the starboard side. The failure of the pins was due to hydrogen embrittlement. Background Through macroexamination, it was found that one of the frac- tures was fresh without any damage or corrosion and with shiny...
Abstract
An aircraft went down over water some 30 minutes into a flight. The wreckage was retrieved and the elevator linkage components were dismantled, cleaned, and reassembled. As the chapter explains, both the port and starboard hinge pins had fractured at a tack welded joint along a flange. Based on visual examination, SEM fractography, and chemical analysis, investigators concluded that the hinge pins were not made from the specified steel and were not properly treated after cadmium plating. The pins failed due to hydrogen embrittlement, which may have been aggravated by welding. The chapter provides several recommendations to avoid such failures in the future.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030003
EISBN: 978-1-62708-282-2
.... For stress-corrosion cracking, the stress is often externally applied. For hydrogen damage, liquid metal induced embrittlement, and solid metal induced embrittlement, the stress is induced by reactions with the environment. In the time between the publication of the first edition of this book...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120123
EISBN: 978-1-62708-269-3
...-corrosion cracking, liquid metal embrittlement, and surface treatments. corrosion resistance crevice corrosion hydrogen embrittlement localized corrosion stress-corrosion cracking titanium alloys uniform corrosion Corrosion is a process that results in the degradation of a metal or an alloy...
Abstract
Titanium and its alloys are used chiefly for their high strength-to-weight ratio, but they also have excellent corrosion resistance, better even than stainless steels. Titanium, as the chapter explains, is protected by a tenacious oxide film that forms rapidly on exposed surfaces. The chapter discusses the factors that influence the growth and quality of this naturally passivating film, particularly the role of oxidizing and inhibiting species, temperature, and alloying elements. It also discusses the effect of different corrosion processes and environments as well as hydrogen, stress-corrosion cracking, liquid metal embrittlement, and surface treatments.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130043
EISBN: 978-1-62708-284-6
... tempering temperatures. Temper embrittlement and blue brittleness are just two of the common mechanisms that can occur from improper heat treatment and tempering operations. Cleaning, pickling, and electroplating operations can also cause potential failures or contribute to them. Hydrogen charging...
Abstract
This chapter provides an overview of the possible mechanisms of failure for heat treated steel components and discusses the techniques for examining fractures, ductile and brittle failures, intergranular failure mechanisms, and fatigue. It begins with a description of the general sources of component failure. This is followed by a section on the stages of a failure analysis, which can proceed one after the other or occur at the same time. These stages of analysis are collection of background data, preliminary visual examination, nondestructive testing, selection and preservation of specimens, mechanical testing, macroexamination, microexamination, metallographic examination, determination of the fracture mechanism, chemical analysis, exemplar testing, and analysis and writing the report. The chapter ends with a discussion on various processes involved in the determination of the fracture mechanism.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030215
EISBN: 978-1-62708-282-2
..., localized corrosion, galvanic corrosion, intergranular corrosion, stress-corrosion cracking, hydrogen damage, and erosion-corrosion. In addition, the economic importance of cost-effective materials selection is also considered. materials selection corrosion control general corrosion localized...
Abstract
This chapter outlines the step-by-step processes by which materials are selected in order to prevent or control corrosion and includes information on materials that are resistant to the various forms of corrosion. The various forms of corrosion covered are general (uniform) corrosion, localized corrosion, galvanic corrosion, intergranular corrosion, stress-corrosion cracking, hydrogen damage, and erosion-corrosion. In addition, the economic importance of cost-effective materials selection is also considered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410439
EISBN: 978-1-62708-265-5
... shortness associated with copper and overheating and burning as occur during forging. It addresses various types of embrittlement, including quench embrittlement, tempered-martensite embrittlement, liquid-metal-induced embrittlement, and hydrogen embrittlement, and concludes with a discussion on high...
Abstract
This chapter describes the causes of cracking, embrittlement, and low toughness in carbon and low-alloy steels and their differentiating fracture surface characteristics. It discusses the interrelated effects of composition, processing, and microstructure and contributing factors such as hot shortness associated with copper and overheating and burning as occur during forging. It addresses various types of embrittlement, including quench embrittlement, tempered-martensite embrittlement, liquid-metal-induced embrittlement, and hydrogen embrittlement, and concludes with a discussion on high-temperature hydrogen attack and its effect on strength and ductility.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610501
EISBN: 978-1-62708-303-4
... Abstract This chapter discusses common forms of corrosion, including uniform corrosion, galvanic corrosion, pitting, crevice corrosion, dealloying corrosion, intergranular corrosion, and exfoliation. It describes the factors that contribute to stress-corrosion cracking, hydrogen embrittlement...
Abstract
This chapter discusses common forms of corrosion, including uniform corrosion, galvanic corrosion, pitting, crevice corrosion, dealloying corrosion, intergranular corrosion, and exfoliation. It describes the factors that contribute to stress-corrosion cracking, hydrogen embrittlement, and corrosion fatigue and compares and contrasts their effects on mechanical properties, performance, and operating life. It also includes information on high-temperature oxidation and corrosion prevention techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430204
EISBN: 978-1-62708-253-2
... in the upper burner area, horizontal or slanted tubes, and the heat-transfer regions at or adjacent to the welds are prone to hydrogen damage. Hydrogen attack or hydrogen damage is different from hydrogen embrittlement. Hydrogen attack is a high-pressure, high-temperature service-related failure, whereas...
Abstract
This chapter discusses the effects of corrosion on boiler tube surfaces exposed to water and steam. It describes the process of corrosion, the formation of scale, and the oxides of iron from which it forms. It addresses the primary types of corrosion found in boiler environments, including general corrosion, under-deposit corrosion, microbially induced corrosion, flow-accelerated corrosion, stress-assisted corrosion, erosion-corrosion, cavitation, oxygen pitting, stress-corrosion cracking, and caustic embrittlement. The discussion is supported by several illustrations and relevant case studies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630081
EISBN: 978-1-62708-270-9
... there is a damaging environmental factor, such as absorption of hydrogen or hydrogen sulfide leading to hydrogen damage. In many other applications, exposure to relatively low temperature for the steel involved may be a real possibility and thus a real problem if the other contributing factors are likely...
Abstract
A brittle fracture occurs at stresses below the material's yield strength (i.e., in the elastic range of the stress-strain diagram). This chapter focuses on brittle fracture in metals and, more specifically, ferrous alloys. It lists the factors that must all be present simultaneously in order to cause brittle fracture in a normally ductile steel. The chapter then discusses the macroscale characteristics and microstructural aspects of brittle fracture. A summary of the types of embrittlement experienced by ferrous alloys is presented. The chapter concludes with a brief section providing information on mixed fracture morphology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490001
EISBN: 978-1-62708-340-9
... impair plant integrity at elevated temperatures. At lower temperatures, corrosion, erosion, pitting, corrosion fatigue, stress corrosion, hydrogen embrittlement, and fatigue can play major roles. A list of key components, property requirements, and materials of construction for steam power plants...
Abstract
The ability to accurately assess the remaining life of components is essential to the operation of plants and equipment, particularly those in service beyond their design life. This, in turn, requires a knowledge of material failure modes and a proficiency for predicting the near and long term effects of mechanical, chemical, and thermal stressors. This chapter presents a broad overview of the types of damage to which materials are exposed at high temperatures and the approaches used to estimate remaining service life. It explains how operating conditions in power plants and oil refineries can cause material-related problems such as embrittlement, creep, thermal fatigue, hot corrosion, and oxidation. It also discusses the factors and considerations involved in determining design life, defining failure criteria, and implementing remaining-life-assessment procedures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030380
EISBN: 978-1-62708-282-2
.... A chemical substance that yields hydrogen ions (H+) when dissolved in water; also a substance that dissociates to produce a proton (H+) in any medium, that is, a proton donor. Compare with base. acid embrittlement. A form of hydrogen embrittlement that may be induced in some metals by acid. acid rain...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.9781627082822
EISBN: 978-1-62708-282-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240323
EISBN: 978-1-62708-251-8
... (cations) to the cathode. Negatively charged ions (anions) are simultaneously attracted to the anode. Charged ions are present in solutions of acids, alkalis, and salts. Water, especially saltwater, is an excellent electrolyte. In pure water, there are positively charged hydrogen ions (H + ) and negatively...
Abstract
This chapter first covers some basic principles of electrochemical corrosion and then some of the various types of corrosion. Some of the more common types of corrosion discussed include uniform corrosion, galvanic corrosion, pitting, crevice corrosion, erosion-corrosion, cavitation, fretting corrosion, intergranular corrosion, exfoliation, dealloying corrosion, stress-corrosion cracking, and corrosion fatigue. The chapter discusses the processes involved in corrosion control by retarding either the anodic or cathodic reactions. The rate of corrosion is reduced by conditioning of the metal, by conditioning the environment, and by electrochemical control. Finally, the chapter deals with high-temperature oxidation that usually occurs in the absence of moisture.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.9781627083409
EISBN: 978-1-62708-340-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080437
EISBN: 978-1-62708-304-1
... in petroleum refining, where hydrogen attack was observed. It documents the extent of the damage in each case and identifies the source of the hydrogen. coal-fired boilers hydrogen attack 17.1 Introduction Hydrogen attack can result in brittle fracture of a steel component during high...
Abstract
Carbon and low-alloy steels in high-temperature service are vulnerable to the effects of hydrogen attack, which include severe loss in tensile and rupture strengths as well as ductility. As the chapter explains, when steel is in contact with hydrogen molecules at elevated temperatures, hydrogen atoms can be absorbed at the surface and then diffuse into the metal. Hydrogen atoms in the metal then react with iron carbide forming methane gas which can accumulate at grain boundaries and other interfaces. The chapter describes two applications, one in coal-fired boilers, the other in petroleum refining, where hydrogen attack was observed. It documents the extent of the damage in each case and identifies the source of the hydrogen.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030292
EISBN: 978-1-62708-282-2
... stress cracking, hydrogen-induced cracking, stress-oriented hydrogen-induced cracking, hydrogen embrittlement cracking, stress-corrosion cracking, velocity-accelerated corrosion, erosion-corrosion, and corrosion control is provided. petroleum refineries petrochemical plants materials selection...
Abstract
This chapter presents the primary considerations and mechanisms for corrosion and how they are involved in the selection of materials for process equipment in petroleum refineries and petrochemical plants. In addition, specific information on mechanical properties, corrosion, sulfide stress cracking, hydrogen-induced cracking, stress-oriented hydrogen-induced cracking, hydrogen embrittlement cracking, stress-corrosion cracking, velocity-accelerated corrosion, erosion-corrosion, and corrosion control is provided.
1