Skip Nav Destination
Close Modal
Search Results for
Hertzian fatigue
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 29
Search Results for Hertzian fatigue
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250019
EISBN: 978-1-62708-345-4
... practically to avoid gear failure. friction gear lubricants gears Hertzian fatigue scuffing wear GEAR PERFORMANCE is profoundly influenced by tribology, which can be defined as the science and technology of interacting surfaces in relative motion, or, alternatively, the science and technology...
Abstract
This chapter reviews the knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Gear tooth failure modes are discussed with emphasis on lubrication-related failures. The chapter is concerned with gear tooth failures that are influenced by friction, lubrication, and wear. Equations for calculating lubricant film thickness, which determines whether the gears operate in the boundary, elastohydrodynamic, or full-film lubrication range, are given. Also, given is an equation for Blok's flash temperature, which is used for predicting the risk of scuffing. In addition, recommendations for lubricant selection, viscosity, and method of application are discussed. The chapter discusses in greater detail the applications of oil lubricant. Finally, a case history demonstrates how the tribological principles discussed in the chapter can be applied practically to avoid gear failure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250257
EISBN: 978-1-62708-345-4
... include both overload and bending fatigue types of failure. Lubricated-related failures include Hertzian fatigue (pitting), wear, and scuffing. In Ref 4 , gear failure modes were broken down into two groups: Failure modes on gear tooth flanks, including pitting, scuffing, and wear Failure...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This chapter begins with the classification of gear failure modes, followed by sections discussing the characteristics of various fatigue failures. Then, it provides information on the modes of impact fractures, wear, scuffing, and stress rupture. Next, the chapter describes the causes of gear failures and discusses the processes involved in conducting the failure analysis. Finally, the chapter presents examples of gear failure analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870237
EISBN: 978-1-62708-344-7
... Abstract This chapter focuses on the processes and mechanisms involved in fatigue. It begins with a review of some of the early theories of fatigue and the tools subsequently used to obtain a better understanding of the fatigue process. It then explains how plasticity plays a major role...
Abstract
This chapter focuses on the processes and mechanisms involved in fatigue. It begins with a review of some of the early theories of fatigue and the tools subsequently used to obtain a better understanding of the fatigue process. It then explains how plasticity plays a major role in creating dislocations, breaking up grains into subgrains, and causing microscopic imperfections to coalesce into larger flaws. It also discusses the factors that contribute to the development and propagation of fatigue cracks, including surface deterioration, volumetric and environmental effects, foreign particles, and stresses generated by rolling contact.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410499
EISBN: 978-1-62708-265-5
..., carbonitriding, and nitrocarburizing. The discussion on carburizing addresses several interrelated factors, including processing principles, alloying, surface oxidation, residual stresses, bending fatigue, contact fatigue, and fracture. carbonitriding carburizing ferritic nitrocarburizing flame...
Abstract
Mechanical components often require surface treatments to meet application demands. This chapter describes several surface hardening treatments for steel and their effect on microstructure, composition, and properties. It discusses flame hardening, induction heating, carburizing, nitriding, carbonitriding, and nitrocarburizing. The discussion on carburizing addresses several interrelated factors, including processing principles, alloying, surface oxidation, residual stresses, bending fatigue, contact fatigue, and fracture.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770001
EISBN: 978-1-62708-337-9
... is defined as depth of case with a minimum hardness of 50 HRC; total case depth to core carbon is approximately 1.5 × effective case depth. See ANSI/AGMA 2001-C 95. Interestingly, with rolling-contact fatigue tests of shallow-cased surfaces (i.e., when the depth of maximum hertzian shear stress...
Abstract
This chapter provides a brief but practical overview of the case carburizing process. It discusses the benefits and challenges of the process and compares and contrasts it with other hardening methods. It explains how design allowables and safety factors compensate for unknowns and familiarizes readers with the steps involved in determining case depth and verifying that case carbon requirements have been met.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300199
EISBN: 978-1-62708-323-2
... microstructure is undesirable from the fatigue standpoint because it produces stress concentrations under Hertzian loading conditions. Each microconstituent can be an initiation point for a fatigue crack. Porosity and inclusions from manufacturing processes can produce similar stress concentrations under...
Abstract
This chapter covers the friction and wear behaviors of carbon, alloy, and tool steels. It begins a review of commercially available shapes and forms. It then describes the metallurgy and microstructure of various designations and grades of each type of steel and explains how it affects their performance in adhesive and abrasive wear applications and in environments where they are subjected to solid particle, droplet, slurry, and cavitation erosion and fretting damage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250039
EISBN: 978-1-62708-345-4
... of gear steels and the bending fatigue strength and properties of carburized steels are reviewed. In addition to wrought steels, the chapter provides information on the other iron-base alloys that are used for gears, namely cast carbon and alloy steels, gray and ductile cast irons, powder metallurgy irons...
Abstract
This chapter describes important requirements for ferrous and nonferrous alloys used for gears. Wrought surface-hardening and through-hardening carbon and alloy steels are the most widely used of all gear materials and are emphasized in this chapter. The processing characteristics of gear steels and the bending fatigue strength and properties of carburized steels are reviewed. In addition to wrought steels, the chapter provides information on the other iron-base alloys that are used for gears, namely cast carbon and alloy steels, gray and ductile cast irons, powder metallurgy irons and steels, stainless steels, and tool steels. In terms of nonferrous alloys, the chapter addresses copper-base alloys, die cast aluminum alloys, zinc alloys, and magnesium alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.htpa.t53310067
EISBN: 978-1-62708-346-1
... deformation. In this case, the collision is completely elastic and can be modeled for elastic impact in accordance with the Hertzian equations. Stage 2: With the impact, the elastic boundary (flow stress) of the metal is exceeded, plastic deformation sets in, and the impact can no longer be regarded...
Abstract
In dynamic hardness tests, the test force is applied to the defined indenter in an accelerated way (with a high application rate). Dynamic test methods relate hardness to the elastic response of a material, whereas the classical static indentation tests determine hardness in terms of plastic behavior. This chapter describes the most important and widespread dynamic hardness testing methods. These tests fall into two categories: methods in which the deformation is measured and methods in which the energy is measured. Methods that measure deformation include the Poldi hammer method, the shearing force method, the Baumann hammer method, and the Dynatest method. Methods that measure energy include the Shore method, the Leeb method, and the Nitronic method. The chapter concludes with a discussion of applications of dynamic hardness testing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130177
EISBN: 978-1-62708-284-6
..., brittleness, and strength in the surface and greater toughness and ductility in the softer core in order to provide optimal (Ref 2) : Wear resistance Resistance to scoring Bending and/or torsional fatigue strength Rolling-contact fatigue strength These properties are optimized...
Abstract
This chapter provides information on various contributors to failure of carburized and carbonitrided components, with the primary focus on carburized components. The most common contributors covered include component design, selection of proper hardenability, increased residual stress, dimensional stability, and generation of quenching and grinding cracks. They also include insufficient case hardness and improper core hardness, influence of surface carbon content and grain size, internal oxidation, structure of carbides, and inclusion of noncarbide. Details on micropitting, macropitting, case crushing, pitting corrosion, and partial melting are also provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770051
EISBN: 978-1-62708-337-9
... of contact-fatigue test discs, in the zone where the Hertzian shear stresses developed during loading, shearing through the network carbides and the matrix was observed ( Ref 26 ). Whether or not such rupturing of the carbide films contributed to either pitting or spalling is not certain, but the test...
Abstract
This chapter discusses the formation of free carbides and their effect on case-carburized components. It explains how alloying elements influence the composition and structure of carbide phases produced at cooling rates typical of carburizing process. It describes the morphology and distribution of the various types of carbides formed and explains how they affect mechanical properties such as hardness, residual stresses, fatigue and fracture behaviors, and wear resistance. It also provides guidance for determining what processing conditions to avoid and when and why parts should be rejected.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300271
EISBN: 978-1-62708-323-2
... spalling under Hertzian fatigue-loading conditions. Thus, thin dense chromium (TDC)-plated 52100 was offered as an improvement to 52100 steel rolling-element bearings for chemical service. Of course, chromium can eventually wear through, so work continued on solid ceramics. Most of this research...
Abstract
This chapter concerns itself with the tribology of ceramics, cermets, and cemented carbides. It begins by describing the composition and friction and wear behaviors of aluminum oxide, silicon carbide, silicon nitride, and zirconia. It then compares and contrasts the microstructure, properties, and relative merits of cermets with those of cemented carbides.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770099
EISBN: 978-1-62708-337-9
... and microstresses are involved. Fatigue Strength The grain size of a steel affects its response to cyclic loading. Macherauch ( Ref 21 ) showed that, for a low-carbon steel, coarse-grained structures are inferior to fine-grained structures when tested under bending fatigue conditions ( Fig. 5.12 ). The same...
Abstract
This chapter is a study of the microstructure of case-hardened steels. It explains what can be learned by examining grain size, microcracking, nonmetallic inclusions, and the effects of microsegregation. It identifies information-rich features, describing their ideal characteristics, the likely cause of variations observed, and their effect on mechanical properties and behaviors. The discussions throughout the chapter are aided by the use of images, diagrams, data plots, and tables.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.9781627083447
EISBN: 978-1-62708-344-7
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130087
EISBN: 978-1-62708-284-6
... often produces a crack in an area that is thought to have low stress. Fig. 15 Scanning electron micrograph of fatigue crack initiating on worn carbonitrided steel. Original magnification: approximately 4000× Contact forces can cause surface damage due to the action of Hertzian stresses...
Abstract
This chapter reviews various ways to classify failure categories and summarizes the basic types, causes, and mechanisms of damage, with particular consideration given to whether the likelihood of the types of damage can or cannot be influenced by the heat treating of steel parts. The classical organization for types of damage (failures) is as follows: deformation, fracture, wear, corrosion or other environmental damage, and multiple or complex damage. The chapter also provides some examples of lack of conformance to specification that may at first look like the heat treater did something wrong, but where other contributing factors made it difficult or impossible for the heat treater to meet the specification.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250163
EISBN: 978-1-62708-345-4
... in various aerospace applications. Fig. 12 Variation of hardness versus case depth in gears made of HP 9-4-30 steel Now the question is, how much case is needed on a gear tooth to prevent case failure due to Hertzian contact stress that causes pitting? In general, high case depths adversely...
Abstract
Gas (atmosphere) carburizing is the de facto standard by which all other surface hardening techniques are measured and is the emphasis of this chapter. Initially, the chapter describes the process and equipment for gas carburizing. This is followed by sections discussing the processes involved in quenching, hardening, tempering, recarburizing, and cold treatment of carburized and quenched gears. Next, the chapter reviews the selection process of materials for carburized gears and provides information on carbon content, properties, and core hardness of gear teeth. The problems associated with carburizing are then covered, followed by the processes involved in heat treat distortion and shot peening of carburized and hardened gears. Information on grinding stock allowance on tooth flanks to compensate for distortion is also provided. The chapter further discusses the applications of carburized and hardened gears. Finally, it reviews vacuum carburizing and compares the attributes of conventional gas carburizing and vacuum carburizing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320033
EISBN: 978-1-62708-347-8
... of hardness versus case depth in gears made of HP 9-4-30 steel Now the question is, how much case is needed on a gear tooth to prevent case failure due to Hertzian contact stress that causes pitting? In general, high case depths adversely affect the quality of case and, hence, the gear life. So...
Abstract
The primary objective of carburizing and hardening gears is to secure a hard case and a relatively soft but tough core. For this process, low-carbon steels (up to a maximum of approximately 0.30% carbon), either with or without alloying elements (nickel, chromium, manganese, molybdenum), normally are used. The processes involved in hardening, tempering, recarburizing, and cold treatment of carburized and quenched gears are discussed. Next, the chapter reviews the selection of materials for carburized gears and considerations related to carbon content, core hardness, and microstructure. This is followed by sections discussing some problems that can be experienced in the carburizing process and how these can be addressed, including a section on shot peening to induce compressive residual stress at and below the surface. It then discusses the applications of carburized gears and finally presents a case history of distortion control of carburized and hardened gears.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.9781627084598
EISBN: 978-1-62708-459-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060429
EISBN: 978-1-62708-261-7
.... corrosion fatigue. The process in which a metal contact fatigue. Cracking and subsequent pit- fractures prematurely under conditions of si- ting of a surface subjected to alternating multaneous corrosion and repeated cyclic Hertzian stresses such as those produced un- loading at lower stress levels or fewer...
Abstract
This appendix is a compilation of terms and definitions related to metallurgy.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.9781627082617
EISBN: 978-1-62708-261-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400245
EISBN: 978-1-62708-258-7
... in one direction causes a reduction in yield strength when stress is applied in the opposite direction. beach marks. Progression marks on a fatigue fracture surface that indicate successive positions of the advancing crack front. The classic appearance is of irregular elliptical or semielliptical rings...
Abstract
This chapter presents definitions of terms related to the metallurgy and metallographic study of irons and steels.
1