Skip Nav Destination
Close Modal
Search Results for
Heat-resistant alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 998 Search Results for
Heat-resistant alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 1995
Image
Published: 01 April 2013
Fig. 4 Sections through two heat-resistant alloy ingots showing flaws that can impair forgeability. (a) Piece of unmelted consumable electrode (white spot near center). (b) Shelf (black line along edge) resulting from uneven solidification of the ingot. Source: Ref 1
More
Image
Published: 01 April 2013
Fig. 5 Section through a heat-resistant alloy forging showing a central discontinuity that resulted from insufficient homogenization during conversion. Step machining was used to reveal the location of the rupture; original diameter is at right. Source: Ref 1
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200298
EISBN: 978-1-62708-354-6
... Abstract This chapter provides a detailed discussion on the definitions, alloy classification, alloy selection, mechanical properties, hot gas corrosion resistance, and formability of heat-resistant high alloy steels. In addition, the applications of cast heat-resistant alloys are also...
Abstract
This chapter provides a detailed discussion on the definitions, alloy classification, alloy selection, mechanical properties, hot gas corrosion resistance, and formability of heat-resistant high alloy steels. In addition, the applications of cast heat-resistant alloys are also discussed.
Image
Published: 01 December 1995
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170540
EISBN: 978-1-62708-297-6
... and carbides affect toughness, hardness, ductility, and strength as well as resistance to heat, corrosion, and wear. cobalt-base corrosion-resistant alloys cobalt-base heat resistant alloys cobalt-base wear-resistant alloys Composition Introduction and Overview Elemental Cobalt Falling...
Abstract
This article discusses the properties, behaviors, and uses of cobalt and its alloys. It explains how cobalt alloys are categorized and describes the commercial designations and grades that are available. It also provides composition information and explains how alloying elements and carbides affect toughness, hardness, ductility, and strength as well as resistance to heat, corrosion, and wear.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790025
EISBN: 978-1-62708-356-0
... Abstract In 1924, the American Society for Testing and Materials (ASTM) organized the symposium "Corrosion and Heat Resisting Alloys, and Electrical Resistance Alloys." It was the beginning of a major role that ASTM played in the history of stainless steel. This chapter provides information...
Abstract
In 1924, the American Society for Testing and Materials (ASTM) organized the symposium "Corrosion and Heat Resisting Alloys, and Electrical Resistance Alloys." It was the beginning of a major role that ASTM played in the history of stainless steel. This chapter provides information on the papers presented at the 1924 symposium. It also describes the role of ASTM in stainless steel standardization after the 1924 symposium.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820125
EISBN: 978-1-62708-339-3
... Abstract Nickel-base alloys used for low-temperature aqueous corrosion are commonly referred to as corrosion-resistant alloys (CRAs), and nickel alloys used for high-temperature applications are known as heat-resistant alloys, high-temperature alloys, or superalloys. The emphasis...
Abstract
Nickel-base alloys used for low-temperature aqueous corrosion are commonly referred to as corrosion-resistant alloys (CRAs), and nickel alloys used for high-temperature applications are known as heat-resistant alloys, high-temperature alloys, or superalloys. The emphasis in this chapter is on the CRAs and in particular nickel-chromium-molybdenum alloys. The chapter provides a basic understanding of general welding considerations and describes the welding metallurgy of molybdenum-containing CRAs and of nickel-copper, nickel-chromium, and nickel-chromium-iron CRAs. It discusses the corrosion behavior of nickel-molybdenum alloys and nickel-chromium-molybdenum alloys. Information on the phase stability and corrosion behavior of nickel-base alloys is also included.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280203
EISBN: 978-1-62708-267-9
... for information on the role of surface condition on fatigue life of superalloys. Metallic Contaminants Parts made from heat-resistant alloys can accumulate traces of other metals on their surfaces after contacting cutting tools, forming dies, or machining and heat treating fixtures. Although metal...
Abstract
Superalloys are susceptible to damage from a variety of surface contaminants. They may also require special surface finishes for subsequent processing steps such as coating applications. This chapter describes some of the cleaning and finishing procedures that have been developed for superalloys and how they work. It discusses the effect of metallic contaminants, tarnish, oxide, and scale and how they can be detected and removed. It also discusses chemical and mechanical surface finishing techniques and where they are used, and presents several application examples.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030074
EISBN: 978-1-62708-282-2
... of alloy composition for heat-resistant alloys, nickel corrosion-resistant alloys, and nickel-base alloys. This chapter also discusses the corrosion implications of changing the alloy microstructure via solid-state transformation, second-phase precipitation, or cold work. It concludes with a comparison...
Abstract
This chapter is dedicated mostly to the metallurgical effects on the corrosion behavior of corrosion-resistant alloys. It begins with a section describing the importance of alloying elements on the corrosion behavior of nickel alloys. The chapter considers the metallurgical effects of alloy composition for heat-resistant alloys, nickel corrosion-resistant alloys, and nickel-base alloys. This chapter also discusses the corrosion implications of changing the alloy microstructure via solid-state transformation, second-phase precipitation, or cold work. It concludes with a comparison of corrosion behavior between cast and wrought product forms.
Image
Published: 01 December 1995
Fig. 22-11 The influence of nickel and chromium on the carburization resistance of cast heat-resistant alloys. All alloys produced for these tests were controlled with C 0.4%, Si 1.4%, and Mn 0.7%.
More
Image
Published: 01 December 2006
and low-alloyed copper alloys, (g) zinc alloys, (h) iron alloys, (i) titanium alloys, and (k) heat-resistant alloys, including nickel alloys. Dimensions in mm [ Lau 76 ]
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030062
EISBN: 978-1-62708-282-2
... of alloy composition for heat-resistant alloys, nickel corrosion-resistant alloys, and nickel-base alloys. This chapter also discusses the corrosion implications of changing the alloy microstructure via solid-state transformation, second-phase precipitation, or cold work. It concludes with a comparison...
Abstract
This chapter is dedicated mostly to the metallurgical effects on the corrosion behavior of corrosion-resistant alloys. It begins with a section describing the importance of alloying elements on the corrosion behavior of nickel alloys. The chapter considers the metallurgical effects of alloy composition for heat-resistant alloys, nickel corrosion-resistant alloys, and nickel-base alloys. This chapter also discusses the corrosion implications of changing the alloy microstructure via solid-state transformation, second-phase precipitation, or cold work. It concludes with a comparison of corrosion behavior between cast and wrought product forms.
Image
Published: 01 December 1995
Fig. 22-9 Effect of varying nickel and chromium on the cyclic oxidation resistance of cast heat resistant alloys. The “service temperature” is defined as the temperature which results in an oxidation rate of 1 mm per year. Data are based on 500 hour tests at 1050 and 1150 °C (1922 and 2102 °F
More
Image
Published: 01 December 1995
Fig. 22-8 The effects of “aging” and “aging plus carburization” at 982 °C (1800 °F) for 250 hours on the room-temperature ductility of cast heat-resistant alloys with 5 to 65% nickel and 19 and 25% chromium
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790241
EISBN: 978-1-62708-356-0
... Institute designations. Therefore, SAE 60410 was the designation for CA-15, 60420 for CA-40, 604304 for CF-8, and 60304L for CF-3. For heat-resisting casting, the prefix “70” was used, such as 70446 for alloy HC. The SAE also developed a series of special “EV” designations, such as EV-4 and EV-13...
Abstract
This chapter presents the early classes of stainless steel. These include martensitic alloys, austenitic alloys, and ferritic alloys. It also presents stainless steel trade names. The chapter describes standardized designation for type 304 stainless steel by various specification organizations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170495
EISBN: 978-1-62708-297-6
... high strengths for both low- and high-temperature services. Applications Nickel and nickel alloys are used for a wide variety of applications, the majority of which involve corrosion resistance and/or heat resistance. Some of these include components used in the chemical and petrochemical...
Abstract
This article examines the role of alloying in the production and use of nickel and its alloys. It explains how nickel-base alloys are categorized and lists the most common grades along with their compositional ranges and corresponding UNS numbers. It describes the role of nearly 20 alloying elements and how they influence strength, ductility, hardness, and corrosion resistance. It also addresses processing issues, explaining how alloying and intermetallic phases affect forming, welding, and machining operations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200404
EISBN: 978-1-62708-354-6
... properties. electrical resistivity magnetic properties physical properties specific heat steel alloys thermal conductivity thermal diffusivity thermal expansion Opening image for Chapter 27, “Physical Properties” Density The density, ρ, is the mass per unit volume...
Abstract
This chapter describes the physical properties of steels used for castings. The properties covered include density, modulus of elasticity, Poisson's ratio, shear modulus, thermal expansion, thermal conductivity, specific heat, thermal diffusivity, electrical resistivity, and magnetic properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170257
EISBN: 978-1-62708-297-6
... to 3%) increases resistance to pitting and crevice corrosion, and copper (3 to 4%) provides resistance to sulfuric acid. Other important examples of high-alloy stainless steels are the 6% Mo superaustenitic stainless steels ( Fig. 1 ) and high-nickel-content grades for heat-resistant applications...
Abstract
This article covers the metallurgy and properties of stainless steels. It provides composition information on all types of ferritic, austenitic, martensitic, duplex, and precipitation-hardening stainless steels, including proprietary and nonstandard grades, along with corresponding property and performance data. It also discusses the effect of various alloying elements on pitting, crevice corrosion, sensitization, stress-corrosion cracking, and oxidation resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720365
EISBN: 978-1-62708-305-8
... resistance. In heat treatable alloys, variations in composition can produce unexpected responses to heat treatments, which result in hard or soft spots, quench cracks, or other flaws. The degree of degradation depends on the alloy and on process variables. Most metallurgical processes are based...
Abstract
In forgings of both ferrous and nonferrous metals, the flaws that most often occur are caused by conditions that exist in the ingot, by subsequent hot working of the ingot or the billet, and by hot or cold working during forging. The inspection methods most commonly used to detect these flaws include visual, magnetic particle, liquid penetrant, ultrasonic, eddy current, and radiographic inspection. This chapter provides a detailed discussion on the characteristics, process steps, applications, advantages, and limitations of these methods. It also describes the flaws caused by the forging operation and the principal factors that influence the selection of a nondestructive inspection method for forgings.
1