Skip Nav Destination
Close Modal
Search Results for
Grossmann-Bain approach
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 20
Search Results for Grossmann-Bain approach
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410335
EISBN: 978-1-62708-265-5
...-Bain approach or Jominy end-quench testing. It also explains how hardenability can be improved through the addition of boron, phosphorus, and other alloys. Grossmann-Bain approach hardenability hardness Jominy test martensite A MARTENSITIC MICROSTRUCTURE is the hardest microstructure...
Abstract
The properties of martensite and the mechanisms that govern its formation are the key to understanding hardness and the hardenability of carbon steel. Martensite is a transformation product of austenite that requires rapid cooling to suppress diffusion-dependent transformation pathways. This chapter describes the conditions that must be met for martensite to form. It discusses the role of quenching and the factors that affect cooling rate, including heat transfer, thermal diffusivity, emissivity, and section size. It defines hardenability and explains how to quantify it using the Grossmann-Bain approach or Jominy end-quench testing. It also explains how hardenability can be improved through the addition of boron, phosphorus, and other alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250153
EISBN: 978-1-62708-287-7
... years working with Jeffries at GE, Bain joined Atlas Steel in Dunkirk, New York, in 1924, where he worked on high-speed and other alloy tool steels with Marcus Grossmann ( FIG. 10.15 ). Over a period of one and a half years, they published four papers on their research. This was an especially...
Abstract
This chapter covers the biographies and literary and research work of pioneers in metals research, namely Henry Marion Howe, Albert Sauveur, Isaiah (Zay) Jeffries, Paul Dyer Merica, Edgar C. Bain, Samuel Leslie Hoyt, and Francis L. VerSnyder.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.9781627082877
EISBN: 978-1-62708-287-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900001
EISBN: 978-1-62708-358-4
... treatment, and specific tool steels in detail. Tool Steels as Special Alloys Tool steels have long been considered to be a very special group of alloys with characteristics similar to but different from those of other steels. Marcus Grossmann and Edgar Bain, in their book on tool steels ( Ref 4...
Abstract
Tool steels are the ferrous alloys used to manufacture tools, dies, and molds that shape, form, and cut other materials, including steels, nonferrous metals, and plastics. This chapter explores the considerations that make tool steels a very special class of steels, the long historical evolution of iron and steel manufacture, including steels for tools, and the development of tool steels as they emerged from the general class of iron and steel products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310055
EISBN: 978-1-62708-326-3
... the heat-removal efficiency of a quenchant, including the Jominy end-quench test, cross-sectional hardness survey, cooling curve analysis, and Grossmann hardenability ( H ) value. Of these, the Grossmann H -value ( Table 2 ) continues to be one of the most widely used to quantify the quench severity...
Abstract
The decomposition of austenite, during controlled cooling or quenching, produces a wide variety of microstructures in response to such factors as steel composition, temperature of transformation, and cooling rate. This chapter provides a detailed discussion on the isothermal transformation and continuous cooling transformation diagrams that characterize the conditions that produce the various microstructures. It discusses the mechanism and process variables of quenching of steel, explaining the factors involved in the mechanism of quenching. In addition, the chapter provides information on the causes and characteristics of residual stresses, distortion, and quench cracking of steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410373
EISBN: 978-1-62708-265-5
... content of quenched and low-temperature tempered steels are related to quench embrittlement as discussed in Chapter 19, “Low Toughness and Embrittlement Phenomena in Steels.” Figure 17.2 , taken from a variety of sources by Grossmann and Bain ( Ref 17.1 ), shows how hardness decreases from...
Abstract
Most steels that are hardened are subjected to a subcritical heat treatment referred to as tempering. Tempering improves the toughness of as-quenched martensitic microstructures but lowers strength and hardness. This chapter describes the microstructural changes that occur during tempering and their effect on the mechanical properties of steel. It also discusses the effect of alloying elements and the formation of oxide colors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560205
EISBN: 978-1-62708-353-9
... during which the austenite contains undissolved carbides, then at longer time carbon inhomogeneities, then finally homogeneous austenite. Fig. 6-20 Microstructures showing the formation of austenite from pearlite. 1000×. Vilella’s reagent. (Adapted from M.A. Grossmann and E.C. Bain, Principles...
Abstract
Austenitization is the heat treatment of steel in the austenite region, and it is conducted for two reasons. One is to obtain austenite as a necessary precursor for heat treatment, and this is the main emphasis of this chapter. The other is to chemically homogenize steel, so that concentration gradients formed during solidification upon casting are minimized; this is briefly described in this chapter. Austenitization topics covered in this chapter are dendritic segregation in steels, austenitization to remove coring, ingot segregation, grain growth behavior, formation of austenite, austenite grain size, heating in the austenite region, and practical austenitizing temperatures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560043
EISBN: 978-1-62708-353-9
... for different severity of quench values H. (a) Relationship between actual critical diameter (D), ideal critical diameter (D i ) and severity of quench (H). (b) Relationships similar to those shown but at a larger scale. (From M.A. Grossmann and E.C. Bain, Principles of Heat Treatment , 5th edition, American...
Abstract
The crux of this chapter is to develop a method to quantitatively define hardenability. The chapter includes the empirical methods to estimate the hardenability knowing the chemical composition, describes prior austenite grain size, and examines their utility. It then reviews the Jominy end-quench test and explains its relation to hardenability. The chapter outlines the concepts of the critical diameter and the ideal critical diameter, leading to establishing a quantitative measure of hardenability. Next, it examines methods that have been developed which allow estimation of the ideal critical diameter from the chemical composition and the austenite grain size. The chapter reviews the methods which allow calculation of the Jominy curve from a value of the ideal critical diameter. Additionally, it describes the selection and application of H-band steels. Finally, the chapter describes the effect of boron on the hardenability of steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410487
EISBN: 978-1-62708-265-5
... Society for Metals 1959 20.2 Ebert L.J. , The Role of Residual Stresses in the Mechanical Performance of Case Carburized Steels , Metall. Trans. A , Vol 9 , 1978 , p 1537 – 1551 10.1007/BF02661936 20.3 Grossmann M.A. and Bain E.C. , Principles of Heat Treatment...
Abstract
Temperature and deformation gradients developed in the course of manufacturing can have undesired effects on the microstructures along their path; the two most common being residual stress and distortion. This chapter discusses these manufacturing-related problems and how they can be minimized by heat treatments. It also provides information on residual stress evaluation and prediction techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900067
EISBN: 978-1-62708-358-4
... to the cross-hatched temperature region shown in Fig. 5-3 , then air cooling. As shown, the normalizing temperatures for hypereutectoid steels approach and sometimes exceed A cm temperatures. Therefore, during heating to and holding at the normalizing temperature, austenite grains nucleate and grow from...
Abstract
This chapter describes how the phases are arranged into desired microstructures during the heat treatment of tool steels. It describes the microstructural changes that are the objectives of the austenitizing, quenching, and tempering steps of tool steel hardening. The chapter covers austenite composition, retained austenite, and austenite grain size and grain growth. It provides information on the hardness and hardenability of tool steel. The chapter reviews some of these concepts and describes the microstructural appearance of the products of diffusion-controlled transformation of austenite. The role that diffusion-controlled phase transformations play relative to the hardenability of high-carbon and alloy tool steels is then emphasized. It presents general considerations of transformation diagrams, Jominy curves, and the hardenability of tool steels. The factors related to the kinetics and stabilization of martensite transformation are also covered. It briefly reviews selected aspects of the changes that evolve during tempering.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410133
EISBN: 978-1-62708-265-5
... 10.1016/0001-6160(72)90077-6 8.16 Grossmann M.A. and Bain E.C. , Principles of Heat Treatment , 5th ed. , American Society for Metals , 1964 8.17 Roberts G.A. and Mehl R.F. , The Mechanism and Rate of Formation of Austenite from Ferrite-Cementite Aggregates...
Abstract
Austenite is the key to the versatility of steel and the controllable nature of its properties. It is the parent phase of pearlite, martensite, bainite, and ferrite. This chapter discusses the importance of austenite, beginning with the influence of austenitic grain size and how to accurately measure it. It then describes the principles of austenite formation and grain growth and examines several time-temperature-austenitizing diagrams representing various alloying and processing conditions. The chapter concludes with a discussion on hot deformation and subsequent recrystallization.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900181
EISBN: 978-1-62708-358-4
... for longer production runs. All the oil-hardening cold-work tool steels are used for similar applications, including: References References 1. Payson P. and Klein J. , The Hardening of Tool Steels , Trans. ASM , Vol 31 , 1943 , p 218 2. Bain E.C. and Grossmann...
Abstract
The oil-hardening cold-work tool steels, designated as group O steels in the AISI classification system, derive their high hardness and wear resistance from high carbon and modest alloy contents. This chapter describes the microstructures and hardenability of oil-hardening tool steels and discusses the processes involved in the hardening and tempering of tool steels. It also covers the selection criteria and applications of oil-hardening cold-work tool steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.9781627083263
EISBN: 978-1-62708-326-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220273
EISBN: 978-1-62708-259-4
... dimensions, and on the quenching medium selected. A = austenite, F = ferrite, B = bainite, M = martensite. Two important methods have been established to measure and quantify steel hardenability: the Jominy method ( Ref 22 ) and the Grossmann critical diameter method ( Ref 20 ). The Jominy method...
Abstract
This chapter provides a practical understanding of heat treatments and how to employ them to optimize the properties and structures of cast irons and steels. It discusses annealing, normalizing, quenching, tempering, patenting, carburizing, nitriding, carbonitriding, and nitrocarburizing. It describes the primary objectives of each treatment along with processing sequences, process parameters, and related phase transformations. The chapter contains more than 100 images, including time-temperature diagrams, transformation curves, data plots, and detailed micro- and macrographs. It also discusses the concepts of hardenability, critical diameter, quench severity, and Jominy testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560127
EISBN: 978-1-62708-353-9
... (1969), Ref 3 ) Fig. 5-3 Hardness of plain carbon steels as a function of tempering temperature. (Adapted from M.A. Grossmann and E.C. Bain, Principles of Heat Treatment , American Society for Metals, Metals Park, Ohio (1964), Ref 4 ) If the effect of tempering for short times...
Abstract
This chapter first examines the tempering behavior of plain carbon steels and then that of alloy steels. Next, some correlations are examined which allow estimations of the tempered hardness from the chemical compositions, tempering temperature and tempering time. The chapter then describes the effect of tempering on the mechanical properties of plain carbon steels and the microstructure of plain carbon steels. It shows examples of the structure of plain carbon steels. Additionally, the chapter explains the stages and kinetics of tempering in alloy steels and plain carbon steels. It also describes some methods of estimating the hardness. Finally, the chapter discusses the important problem of temper embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560235
EISBN: 978-1-62708-353-9
... Impact, ft-Ib (a) 35.3 2.9 (From M.A. Grossmann and E.C. Bain, Principles of Heat Treatment , 5th edition, American Society for Metals, Metals Park, Ohio (1964)), Ref 8 (a) Foot-pounds absorbed in breaking 0.180-inch round, unnotched specimens Intercritical Heat Treatment...
Abstract
This chapter describes the heat treatments called annealing and normalizing for steels and examines the structures formed and the reasons for these treatments. It also provides a description of the special heat treatments, namely, martempering and austempering. Information on intercritical heat treatment is also included.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.9781627082655
EISBN: 978-1-62708-265-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.9781627083539
EISBN: 978-1-62708-353-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440027
EISBN: 978-1-62708-262-4
... been established that more hardenability can be attained with less total alloy content when two or more alloys are used together. This practice is clearly reflected in the standard alloy steel compositions (see Chapter 7, “Heat Treating of Alloy Steels” ). This approach not only saves alloys...
Abstract
This chapter discusses the general principles of measuring hardness and hardenability of steel. The discussion begins by defining hardness and exploring the history of hardness testing. This is followed by a discussion on the principles, applications, advantages, and disadvantages of commonly used hardness testing systems: the Brinell, Rockwell, Vickers, Scleroscope, and various microhardness testers that employ Vickers or Knoop indenters. The effect of carbon content on annealed steels and hardened steels is then discussed. A brief discussion on the concept of the ideal critical diameter and austenitic grain size of steels is also provided to understand how one can calculate and quantify hardenability. The processes involved in various methods for evaluating hardenability are reviewed, discussing the effect of alloying elements on hardenability.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410439
EISBN: 978-1-62708-265-5
... are smaller and may act only on small fractions of the sulfide networks. Overheating can be reduced or eliminated in a number of ways. Control of forging temperatures is essential, but sometimes reducing temperature may not be the most efficient approach for complex forgings. Strong sulfide-forming...
Abstract
This chapter describes the causes of cracking, embrittlement, and low toughness in carbon and low-alloy steels and their differentiating fracture surface characteristics. It discusses the interrelated effects of composition, processing, and microstructure and contributing factors such as hot shortness associated with copper and overheating and burning as occur during forging. It addresses various types of embrittlement, including quench embrittlement, tempered-martensite embrittlement, liquid-metal-induced embrittlement, and hydrogen embrittlement, and concludes with a discussion on high-temperature hydrogen attack and its effect on strength and ductility.