Skip Nav Destination
Close Modal
Search Results for
Filler metals
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 234 Search Results for
Filler metals
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080445
EISBN: 978-1-62708-304-1
...-strengthened alloys; and iron-, nickel- and cobalt-base filler metals. cast corrosion resistant alloys cast nickel alloys chemical composition cobalt-base alloys filler metals heat-resistant alloys nickel alloys oxide-dispersion-strengthened alloys wrought iron alloys wrought stainless steel...
Abstract
This appendix is a collection of tables listing the chemical compositions of wrought ferritic steels; wrought stainless steels; cast corrosion- and heat-resistant alloys; wrought iron-, nickel-, and cobalt-base alloys; cast nickel- and cobalt-base alloys; oxide-dispersion-strengthened alloys; and iron-, nickel- and cobalt-base filler metals.
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230189
EISBN: 978-1-62708-351-5
... for gold jewelry. It provides understanding of the metallurgy of gold jewelry alloys and includes a discussion of brazes for carat gold jewelry. The chapter also provides information on traditional gold jewelry brazes, the target properties of filler metals for carat gold jewelry and describes...
Abstract
Brazes for carat gold jewelry must meet or exceed the fineness/caratage of the component piece parts of the assembly in order for it to meet the national fineness/caratage standards and marking or hallmarking regulations for jewelry. This chapter concentrates on brazes for gold jewelry. It provides understanding of the metallurgy of gold jewelry alloys and includes a discussion of brazes for carat gold jewelry. The chapter also provides information on traditional gold jewelry brazes, the target properties of filler metals for carat gold jewelry and describes the characteristics of novel 22 carat gold solders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290165
EISBN: 978-1-62708-306-5
...Abstract Abstract Brazing and soldering processes use a molten filler metal to wet the mating surfaces of a joint, with or without the aid of a fluxing agent, leading to the formation of a metallurgical bond between the filler and the respective components. This chapter discusses...
Abstract
Brazing and soldering processes use a molten filler metal to wet the mating surfaces of a joint, with or without the aid of a fluxing agent, leading to the formation of a metallurgical bond between the filler and the respective components. This chapter discusses the characteristics, advantages, and disadvantages of brazing and soldering. The first part focuses on the fundamentals of the brazing process and provides information on filler metals and specific brazing methods. The soldering portion of the chapters provides information on solder alloys used, selection criteria for base metal, the processes involved in precleaning and surface preparation, types of fluxes used, solder joint design, and solder heating methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280149
EISBN: 978-1-62708-267-9
... 25 (L-605) 1175–1230 2150–2250 1040 1900 Conditions for gas tungsten arc welding of superalloys Table 9.4 Conditions for gas tungsten arc welding of superalloys Base-metal thickness, in. (mm) Diameter of filler metal (a) , in. (mm) Electrode diameter (b) , in. (mm) Shielding...
Abstract
Superalloys, except those with high aluminum and titanium contents, are welded with little difficulty. They can also be successfully brazed. This chapter describes the welding and brazing processes most often used and the factors that must be considered when making application decisions. It discusses the basic concepts of fusion welding and the differences between solid-solution-hardened and precipitation-hardened wrought superalloys. It addresses joint integrity, design, weld-related cracking, and the effect of grain size, precipitates, and contaminants. It covers common fusion welding techniques, defect prevention, fixturing, heat treatments, and general practices, including the use of filler metals. It also discusses several solid-state welding methods, superplastic forming, and transient liquid phase bonding, a type of diffusion welding process. The chapter includes extensive information on brazing processes, atmospheres, filler metals, and surface preparation procedures. It also includes examples of nickel-base welded components for aerospace use.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120065
EISBN: 978-1-62708-269-3
... defects, and the need for contaminant-free surfaces and atmospheres. It describes common forms of fusion, arc, and solid-state welding along with the use of filler metals, shielding gases, and stress-relief treatments. It also discusses the practice of titanium brazing and the role of filler metals...
Abstract
This chapter covers the welding characteristics of titanium along with the factors that determine which welding method is most appropriate for a given application. It discusses the joinability of titanium alloys, the effect of heat on microstructure, the cause of various defects, and the need for contaminant-free surfaces and atmospheres. It describes common forms of fusion, arc, and solid-state welding along with the use of filler metals, shielding gases, and stress-relief treatments. It also discusses the practice of titanium brazing and the role of filler metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290137
EISBN: 978-1-62708-306-5
...Abstract Abstract Solid-state welding processes are those that produce coalescence of the faying surfaces at temperatures below the melting point of the base metals being joined without the addition of brazing or solder filler metal. This chapter discusses solid-state welding processes...
Abstract
Solid-state welding processes are those that produce coalescence of the faying surfaces at temperatures below the melting point of the base metals being joined without the addition of brazing or solder filler metal. This chapter discusses solid-state welding processes such as diffusion welding, forge welding, roll welding, coextrusion welding, cold welding, friction welding, friction stir welding, explosion welding, and ultrasonic welding.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820001
EISBN: 978-1-62708-339-3
...Abstract Abstract Corrosion failures of welds can occur even when the proper base metal and filler metal have been selected, industry codes and standards have been followed, and welds have been deposited that possess full weld penetration and have proper shape and contour. This chapter...
Abstract
Corrosion failures of welds can occur even when the proper base metal and filler metal have been selected, industry codes and standards have been followed, and welds have been deposited that possess full weld penetration and have proper shape and contour. This chapter describes some of the general characteristics associated with the corrosion of weldments. The role of macro- and microcompositional variations, a feature common to weldments, is emphasized in this chapter to bring out differences that need to be realized in comparing the corrosion of weldments to that of wrought materials. The discussion covers the factors influencing corrosion of weldments, microstructural features of weld microstructures, various forms of weld corrosion, and welding practice to minimize corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720411
EISBN: 978-1-62708-305-8
... metals and the types of flaws exhibited by brazed joints. brazed joints brazing filler metals eddy current inspection liquid penetrant inspection magnetic particle inspection nondestructive inspection radiographic inspection ultrasonic inspection visual inspection welding weldments...
Abstract
Weldments made by the various welding processes may contain discontinuities that are characteristic of that process. This chapter discusses the different welding processes as well as the discontinuities typical of each process. It provides a detailed discussion on the methods of nondestructive inspection of weldments including visual inspection, liquid penetrant inspection, magnetic particle inspection, radiographic inspection, ultrasonic inspection, leak testing, and eddy current and electric current perturbation inspection. The chapter also describes the properties of brazing filler metals and the types of flaws exhibited by brazed joints.
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230001
EISBN: 978-1-62708-351-5
... and contact angle, fluid flow, filler spreading characteristics, surface roughness of components, dissolution of parent materials, new phase formations, significance of the joint gap, and the strength of metals. The chapter also describes issues in processing aspects that must be considered when designing...
Abstract
Brazing and soldering jointly represent one of several methods for joining solid materials. This chapter summarizes the principal characteristics of the various joining methods. It then discusses key parameters of brazing including surface energy and tension, wetting and contact angle, fluid flow, filler spreading characteristics, surface roughness of components, dissolution of parent materials, new phase formations, significance of the joint gap, and the strength of metals. The chapter also describes issues in processing aspects that must be considered when designing a joint, and the health, safety, and environmental aspects of brazing.
Book Chapter
Book: Principles of Soldering
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2004
DOI: 10.31399/asm.tb.ps.t62440001
EISBN: 978-1-62708-352-2
... contact angle diffusion bonding filler metals jigging joining joint gap pressure welding soldering surface energy surface roughness surface tension wetting 1.1 Joining Methods SOLDERING AND BRAZING represent one of several types of methods for joining solid materials. These methods may...
Abstract
Soldering and brazing represent one of several types of methods for joining solid materials. These methods may be classified as mechanical fastening, adhesive bonding, soldering and brazing, welding, and solid-state joining. This chapter summarizes the principal characteristics of these joining methods. It presents a comparison between solders and brazes. Further details on pressure welding and diffusion bonding are also provided. Key parameters of soldering are discussed, including surface energy and surface tension, wetting and contact angle, fluid flow, filler spreading characteristics, surface roughness of components, dissolution of parent materials and intermetallic growth, significance of the joint gap, and the strength of metals. The chapter also examines the principal aspects related to the design and application of soldering processes.
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230207
EISBN: 978-1-62708-351-5
...Abstract Abstract This chapter discusses the process, principles, and modeling of the diffusion brazing system. The applications of diffusion brazing to wide-gap joining and layer manufacturing are also discussed. diffusion brazing filler metals layer manufacturing wide-gap modeling...
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820169
EISBN: 978-1-62708-339-3
... be considered. When dissimilar metals are joined by arc (fusion) welding processes, alloying between the base metals and a filler metal; when used, becomes a major consideration. The resulting weld metal can behave much differently from one or both base metals during subsequent processing or in service...
Abstract
Many factors must be considered when welding dissimilar metals, and adequate procedures for the various metals and sizes of interest for a specific application must be developed and qualified. Most combinations of dissimilar metals can be joined by solid-state welding (diffusion welding, explosion welding, friction welding, or ultrasonic welding), brazing, or soldering where alloying between the metals is normally insignificant. This chapter describes the factors influencing joint integrity and discusses the corrosion behavior of dissimilar metal weldments.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080003
EISBN: 978-1-62708-304-1
... in making an alloy selection. Selection of an appropriate filler metal for welding is important for component fabrication involving welding. Normally, it is a simple process when the candidate alloy has a filler metal with matching chemical composition. However, many high-temperature alloys do not have...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230401
EISBN: 978-1-62708-298-3
... 23.1.5 Surface Preparation 23.1.6 Filler Metals and Feed Rates 23.1.7 Shielding 23.1.8 Joint Design 23.1.9 Weld Repair 23.2.1 Introduction 23.2.2 Selection of Brazing Process 23.2.3 Surface Preparation 23.2.4 Filler Metals 23.2.5 Joint Design 23.2.6 Test Results of Brazed...
Abstract
Beryllium has been successfully joined by fusion welding, brazing, solid-state bonding, and soldering. This chapter describes these processes in detail along with their advantages and disadvantages. It also addresses application considerations such as surface preparation, joint design, and testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030096
EISBN: 978-1-62708-282-2
... martensitic grades. Metallurgical Factors Stainless steel base metals and thus the welding filler metals used with them are almost invariably chosen on the basis of adequate corrosion resistance for the intended application. This usually means that the welding filler metal must at least match...
Abstract
This chapter discusses various factors that affect corrosion of stainless steel weldments. It begins by providing an overview of the metallurgical factors associated with welding. This is followed by a discussion on preferential attack associated with weld metal precipitates in austenitic stainless steels as well as several forms of corrosion associated with welding. The effects of gas-tungsten arc weld shielding gas composition and heat-tint oxides on corrosion resistance are then covered. Microbiological corrosion of butt welds in water tanks is also illustrated. In addition, the chapter provides information on corrosion of ferritic and duplex stainless steel weldments.
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230143
EISBN: 978-1-62708-351-5
... to be considered or, alternatively, the functional requirements of the product may need to be relaxed. 4.1 Metallurgical Constraints and Solutions In principle, most metals can be joined using filler alloys. However, when there is a requirement to braze two different parent materials together, the available...
Abstract
This chapter considers the role of materials in brazing operations and the manner in which they impact on the choice of processing conditions and their optimization. The concepts covered are metallurgical and mechanical constraints, and constraints imposed by the components and their solutions as well as service environment considerations.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820099
EISBN: 978-1-62708-339-3
... General Welding Considerations The performance of duplex stainless steels can be significantly affected by welding. Due to the importance of maintaining a balanced microstructure and avoiding the formation of undesirable metallurgical phases, the welding parameters and filler metals employed must...
Abstract
Duplex stainless steels are two-phase alloys based on the iron-chromium-nickel system. Duplex stainless steels offer corrosion resistance and cost advantages over the common austenitic stainless steels. Although there are some problems with welding duplex alloys, considerable progress has been made in defining the correct parameters and chemistry modifications for achieving sound welds. This chapter provides a basic understanding of the development, grade designations, microstructure, properties, and general welding considerations of duplex stainless steel. It also discusses the influence of ferrite-austenite balance on corrosion resistance and the influence of different welding conditions on various material properties of alloy 2205 (UNS S31803).
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870161
EISBN: 978-1-62708-299-0
... a specific temper is designated. (b) Measured in an aqueous solution of 53 g NaCl + 3 g H 2 O 2 per liter at 25 °C (77 °F). (c) Potential varies with quenching rate during fabrication. Compositions and solidus, liquidus, and brazing temperature ranges of brazing filler metals for use...
Abstract
This chapter describes the factors that affect the corrosion performance of aluminum assemblies joined by methods such as welding, brazing, soldering, and adhesive bonding. The factors covered include galvanic effects, crevices, and assembly stresses in products susceptible to stress-corrosion cracking.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030112
EISBN: 978-1-62708-282-2
... IT IS NOT UNUSUAL to find that, although the wrought form of a metal or alloy is resistant to corrosion in a particular environment, the welded counterpart is not. Further, welds can be made with or without the addition of filler metal. However, there are also many instances in which the weld exhibits corrosion...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290279
EISBN: 978-1-62708-306-5
... processes, alloying between the base metals and a filler metal, when used, becomes a major consideration. The resulting weld metal can behave much differently from one or both base metals during subsequent processing or in service. The principal factors that are responsible for failure (cracking...
Abstract
This chapter reviews materials issues encountered in joining, including challenges involved in welding of dissimilar metal combinations; joining of plastics by mechanical fastening, solvent and adhesive bonding, and welding; joining of thermoset and thermoplastic composite materials by mechanical fastening, adhesive bonding, and, for thermoplastic composites, welding; the making of glass-to-metal seals; and joining of oxide and nonoxide ceramics to themselves and to metals by solid-state processes and by brazing. The classification, types, applications, and the mechanism of each of these methods are covered. The factors influencing joint integrity and the main considerations in welding dissimilar metal combinations are also discussed.