Skip Nav Destination
Close Modal
Search Results for
Fe-0.15C
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-8 of 8 Search Results for
Fe-0.15C
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 January 2015
Fig. 4.12 (a) Colonies of interphase precipitation (light areas) nucleated at austenite grain boundaries of an Fe-0.75V-0.15C alloy held 10 s at 680 °C (1255 °F). Original magnification at 125×. (b) Rows of fine alloy carbides within a colony of the same steel held 5 min at 725 °C (1340 °F
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410039
EISBN: 978-1-62708-265-5
...) or less and are too fine to be resolved in the light microscope. Figure 4.12(a) is a light micrograph that shows the initiation of interphase precipitation at austenite grain boundaries in an Fe-0.75V-0.15C alloy held for 10 s at 680 °C (1255 °F). The colonies of the interphase precipitate have curved...
Abstract
The microstructure of carbon steel is largely determined by the transformation of austenite to ferrite, cementite, and pearlite. This chapter focuses on the microstructures produced by diffusion-controlled transformations that occur at relatively low cooling rates. It describes the conditions that promote such transformations and, in turn, how they affect the structure of various phases and the rate at which they form. The chapter also discusses the concepts of transformation kinetics, minimum free energy, and nucleation and growth, and provides information on alloying, interphase precipitation, and various types of transformations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350043
EISBN: 978-1-62708-315-7
... Material Test geometry (a) Friction coefficient Source Fixed specimen Moving specimen Static Kinetic Ag Ag IS 0.50 … 1 Au IS 0.53 … 1 Cu IS 0.48 … 1 Fe IS 0.49 … 1 Al Al IS 0.57 … 1 Ti IS 0.54 … 1 Al, alloy 6061-T6 Al, alloy 6061-T6 FOF 0.42...
Abstract
This chapter discusses the basic principles of friction and the factors that must be considered when determining its effect on moving bodies in contact. It provides an extensive amount of friction data, including static and kinetic friction coefficients for numerous combinations of engineering materials and coatings. It also describes the causes and effects of the most common forms of wear, the conditions under which they occur, the role of lubrication, and wear testing methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080147
EISBN: 978-1-62708-304-1
... stability diagram in terms of the M-O-Cl (M represents metal, O represents oxygen, and Cl represents chlorine) system is quite useful in describing the possible corrosion products that may form on the metal. These diagrams can be constructed for major alloying elements of high-temperature alloys (e.g., Fe...
Abstract
Alloys containing elements that form volatile or low-melting-point halides are susceptible to high-temperature corrosion attack. This chapter explains how to determine whether such phases are likely to form, and the rate at which they occur, based on thermodynamic data and phase stability diagrams. It provides an extensive amount of high-temperature corrosion data for metals and alloys in gaseous environments containing chlorine and hydrogen chloride; fluorine and hydrogen fluoride; bromine and hydrogen bromide; and iodine and hydrogen iodide.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.9781627083041
EISBN: 978-1-62708-304-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030215
EISBN: 978-1-62708-282-2
... resistant to hydrochloric acid (HCl) up to the atmospheric boiling point. However, the presence of small quantities of oxidizing metal ions, such as ferric ion (Fe 3+ ), will result in severe corrosion. Other operating conditions that require definition, especially for equipment used in the chemical...
Abstract
This chapter outlines the step-by-step processes by which materials are selected in order to prevent or control corrosion and includes information on materials that are resistant to the various forms of corrosion. The various forms of corrosion covered are general (uniform) corrosion, localized corrosion, galvanic corrosion, intergranular corrosion, stress-corrosion cracking, hydrogen damage, and erosion-corrosion. In addition, the economic importance of cost-effective materials selection is also considered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560081
EISBN: 978-1-62708-291-4
..., where it is shown that the effect is a consequence of the segregation of certain elements during solidification of the ingot or billet. Manganese is the element mainly responsible. Fig. 5.3 (Part 1) Fully killed continuous cast mild steel (0.15% C). (a) 0.15C-0.15Si-0.8Mn-0.02S-<0.01P (wt...
Abstract
This chapter covers a broad range of low-carbon steels optimized for structural applications. Low-carbon structural steels are generally considered the highest-strength steels that can be welded without undue difficulty, even in the field. They include mild steels, carbon-manganese and niobium- and vanadium-containing steels, and high-strength low-alloy steels. Chapter 5 discusses the composition, microstructure, and properties of these workhorse materials and explains how to identify the cause of production-related issues such as lamellar tearing and ferrite-pearlite banding. It also describes some of the alloying variations that have been developed to improve machinability and the mechanisms by which they work.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560309
EISBN: 978-1-62708-291-4
.... Only workpieces with rotational symmetry can be welded, but dissimilar metals can be joined. Fig. 11.5 (Part 1) Friction butt weld of mild steel to mild steel (0.15% C, 0.15C-0.20Si-0.56Mn, wt%) bar. (a) Weld region. 5% nital. 2×. (b) Weld region. Arrow indicates approximate position...
Abstract
This chapter examines the effects of welding on the structure of metal, particularly the changes induced in the isothermal regions adjacent to the weld. It presents more than 150 images identifying structures and features associated with fusion and solid-state welding processes, including electroslag, TIG, gas, electron-beam, and arc welding as well as vacuum diffusion, forge, friction, electrical-resistance, and explosive welding. It also discusses the effect of welding temperature, pressure, and composition on the transformations that occur in and around the weld, and it includes a short section on brazing and braze welding.