Skip Nav Destination
Close Modal
Search Results for
Crack propagation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 646 Search Results for
Crack propagation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Mechanisms of Stress-Corrosion Cracking[1]
> Stress-Corrosion Cracking<subtitle>Materials Performance and Evaluation</subtitle>
Published: 01 January 2017
Fig. 1.2 Schematic diagram of typical crack propagation rate as a function of crack-tip stress-intensity behavior illustrating the regions of stage 1, 2, and 3 crack propagation as well as identifying the plateau velocity and the threshold stress intensity
More
Image
Published: 01 March 2006
Image
in Advanced Techniques of Failure Analysis
> Failure Analysis of Engineering Structures: Methodology and Case Histories
Published: 01 October 2005
Fig. 5.9 XSP of crack tip showing successive stages of crack propagation in a thermally embrittled stainless steel. Source: Ref 14 , 15
More
Image
Published: 01 December 2015
Fig. 2 Schematic of typical crack propagation rate as a function of crack tip stress-intensity behavior illustrating the regions of stages 1, 2, and 3 crack propagation, as well as identifying the plateau velocity and the threshold stress intensity
More
Image
in Mechanisms of Stress-Corrosion Cracking[1]
> Stress-Corrosion Cracking<subtitle>Materials Performance and Evaluation</subtitle>
Published: 01 January 2017
Fig. 1.17 Relationship between the average crack propagation rate and the oxidation (i.e., dissolution and oxide growth) kinetics on a straining surface for several ductile alloy/aqueous environment systems
More
Image
in Mechanisms of Stress-Corrosion Cracking[1]
> Stress-Corrosion Cracking<subtitle>Materials Performance and Evaluation</subtitle>
Published: 01 January 2017
Fig. 1.19 Variation in the average crack propagation rate in sensitized type 304 stainless steel in water at 288 °C (550 °F) with oxygen content. Data are from constant-extension-rate testing, constant-load testing, and field observations on boiling water reactor piping. IGSCC, intergranular
More
Image
in Mechanisms of Stress-Corrosion Cracking[1]
> Stress-Corrosion Cracking<subtitle>Materials Performance and Evaluation</subtitle>
Published: 01 January 2017
Fig. 1.29 Typical subcritical crack propagation rate vs. stress-intensity relationship. Stress intensity, K , is defined as K = A σ π C / B , where σ is the total tensile stress, C is the crack length, and A and B are geometrical constants.
More
Image
in Mechanisms of Stress-Corrosion Cracking[1]
> Stress-Corrosion Cracking<subtitle>Materials Performance and Evaluation</subtitle>
Published: 01 January 2017
Fig. 1.32 Comparison between observed and theoretical crack propagation/strain rate ( a ˙ / ε ˙ ) relationships for furnace-sensitized type 304 stainless steel in water/0.2 ppm oxygen at 288 °C (550 °F)
More
Image
in Mechanisms of Stress-Corrosion Cracking[1]
> Stress-Corrosion Cracking<subtitle>Materials Performance and Evaluation</subtitle>
Published: 01 January 2017
Fig. 1.35 Schematic representation of crack propagation by the film rupture model, (a) Crack tip stays bare as a result of continuous deformation ( Ref 1.73 ). (b) Crack tip passivates and is ruptured repeatedly ( Ref 1.79 , 1.80 ).
More
Image
in Stress-Corrosion Cracking of Copper Alloys[1]
> Stress-Corrosion Cracking<subtitle>Materials Performance and Evaluation</subtitle>
Published: 01 January 2017
Fig. 7.21 Rate of stress-corrosion crack propagation as a function of σ g l in cold rolled brass exposed to 0.05 M CuSO 4 + 0.48 M (NH 4 ) 2 SO 4 (pH 7.25). Source: Ref 7.55
More
Image
in Evaluation of Stress-Corrosion Cracking[1]
> Stress-Corrosion Cracking<subtitle>Materials Performance and Evaluation</subtitle>
Published: 01 January 2017
Fig. 17.48 Relationship of applied stress and flaw depth to crack propagation in hydrogen gas. Dashed lines show an example of the use of such a chart for a steel with K th of 60.5 MPa m ( 55 ksi in . ) at an operating stress of 359 MPa (52 ksi). Source: Ref
More
Image
Published: 01 June 2008
Image
Published: 01 June 2008
Image
Published: 01 September 2008
Image
Published: 01 December 2003
Fig. 9 Fatigue-crack-propagation behavior. ABS, acrylonitrile-butadiene-styrene; PC, polycarbonate; M-PPE, modified polyphenylene ether
More
Image
Published: 01 December 2003
Fig. 7 Specimens employed in fatigue crack propagation studies. (a) Single-edge-notch specimen. (b) Compact-tension specimen
More
Image
Published: 01 December 2003
Fig. 8 Schematic illustration of the three distinct regimes of crack propagation rate observed in fatigue testing under constant amplitude loading conditions. For polymers, typical values of m range from 3 to 50, depending on the polymer system.
More
Image
Published: 01 December 2003
Fig. 11 Comparison of fatigue crack propagation behavior in the Paris regime for several amorphous and semicrystalline polymers. Note enhanced fatigue resistance of the semicrystalline polymers. PC, polycarbonate; PMMA, polymethyl methacrylate; PPO, polypropylene oxide; PVF, polyvinyl formal
More
Image
Published: 01 December 2003
Fig. 12 Fatigue crack propagation behavior for a rubber-toughened epoxy. The addition of rubber decreases the slope, m , at high crack growth rates due to toughening mechanisms and retarded crack growth. CTBN, carboxylterminated polybutadiene acrylonitrile rubber; MBS, methacrylate-butadiene
More
Image
Published: 01 December 2003
Fig. 3 Thermal fatigue failure and conventional fatigue crack propagation fracture during reversed load cycling of acetal. Source: Ref 10
More
1