Skip Nav Destination
Close Modal
Search Results for
Compressors
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 197 Search Results for
Compressors
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270115
EISBN: 978-1-62708-301-0
... Abstract Two compressor rotors of similar design and construction were severely damaged during operation. In one rotor, all the blades in the third and fourth stages had been sheared off and some had lifted from the dovetail portion of the drum. The damage in the other rotor was more extensive...
Abstract
Two compressor rotors of similar design and construction were severely damaged during operation. In one rotor, all the blades in the third and fourth stages had been sheared off and some had lifted from the dovetail portion of the drum. The damage in the other rotor was more extensive. Most of the blades in the first four stages had sheared off and many lifted from the dovetail region, particularly in the first two stages where several mounting dovetails had also fractured. Based on visual examination and the results of SEM fractography, metallography, and chemical analysis, investigators concluded that the compressor rotors failed due to stress-corrosion cracking in the dovetail mountings. They also provided recommendations to prevent or mitigate future occurrences.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270141
EISBN: 978-1-62708-301-0
... Abstract A compressor blade made of titanium alloy fractured during an engine test. The material and processing conditions of the blade were found to be satisfactory, turning the focus of the investigation to operating anomalies and human error. A photograph of the failed blade shows well...
Abstract
A compressor blade made of titanium alloy fractured during an engine test. The material and processing conditions of the blade were found to be satisfactory, turning the focus of the investigation to operating anomalies and human error. A photograph of the failed blade shows well-defined chevron marks along the fracture surface that end in a shear lip on the convex side. Further examination using a SEM shows that the failure was due to overload. Based on these observations and the results of tensile testing and microstructural analysis, investigators concluded that a sudden impact load on the concave side of the blade caused it to fracture.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270150
EISBN: 978-1-62708-301-0
... Abstract This chapter discusses the failure of a compressor blade in an aircraft engine and explains how investigators determined the cause. Based on visual examination and the results of SEM fractography and chemical analysis, it was concluded that blade failed due to fatigue fracture...
Abstract
This chapter discusses the failure of a compressor blade in an aircraft engine and explains how investigators determined the cause. Based on visual examination and the results of SEM fractography and chemical analysis, it was concluded that blade failed due to fatigue fracture originating from nonmetallic inclusions in the blade root.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270191
EISBN: 978-1-62708-301-0
... in the seal land region between two stages in the compressor section of the rotor. The report also recommends changes to remediate the problem. gas turbine hardness measurement microstructural analysis rotor stages tensile test visual examination Summary A gas turbine unit tripped following...
Abstract
This report describes the failure of a gas turbine in a combined-cycle power plant and the examination and tests that were conducted to determine the cause. Based on microstructural analysis, hardness measurements, and tensile tests, the failure was attributed to inadequate clearances in the seal land region between two stages in the compressor section of the rotor. The report also recommends changes to remediate the problem.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270173
EISBN: 978-1-62708-301-0
... Abstract A titanium alloy disc on the fourth stage of an aircraft engine compressor was found cracked in the course of a defect investigation. The disc had not yet reached the halfway point of its expected service life. The chapter explains how the crack was examined and provides relevant...
Abstract
A titanium alloy disc on the fourth stage of an aircraft engine compressor was found cracked in the course of a defect investigation. The disc had not yet reached the halfway point of its expected service life. The chapter explains how the crack was examined and provides relevant details about its location on the disc and various aspects of its appearance. It also explains how failure analysts concluded that the disc had been subjected to a fluctuating load of high magnitude and that the crack was the result of two fatigue cracks, originating from opposite sides of the diaphragm.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270118
EISBN: 978-1-62708-301-0
... Abstract A first-stage compressor blade failed prematurely in an aircraft engine, fracturing at the midpoint of the root transition region. An examination of the fracture surface revealed beach marks, striations, and pitting, indicating that the blade failed by fatigue due to a crack initiated...
Abstract
A first-stage compressor blade failed prematurely in an aircraft engine, fracturing at the midpoint of the root transition region. An examination of the fracture surface revealed beach marks, striations, and pitting, indicating that the blade failed by fatigue due to a crack initiated by corrosion pits in the root transition region. The chapter recommends further investigations to determine the cause of pitting, which appears to be confined to the dovetail region.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270128
EISBN: 978-1-62708-301-0
... Abstract This chapter discusses the failure of a first-stage compressor blade in an aircraft engine and explains how investigators determined that it was caused by fatigue, with a crack originating from corrosion pits that developed in the root transition region on the convex side...
Abstract
This chapter discusses the failure of a first-stage compressor blade in an aircraft engine and explains how investigators determined that it was caused by fatigue, with a crack originating from corrosion pits that developed in the root transition region on the convex side of the airfoil.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270133
EISBN: 978-1-62708-301-0
... Abstract A second-stage compressor blade in an aircraft engine fractured after 21 h of service. The remaining portion of the blade was removed and examined as were several adjacent blades. Based on the results of SEM fractography, microstructural analysis, and hardness testing, the blade failed...
Abstract
A second-stage compressor blade in an aircraft engine fractured after 21 h of service. The remaining portion of the blade was removed and examined as were several adjacent blades. Based on the results of SEM fractography, microstructural analysis, and hardness testing, the blade failed due to stress-corrosion cracking combined with the effects of inadequate tempering.
Image
Published: 01 December 2006
Fig. 2.54 Extruded blanks in AlMgSi0.5 for rotors of the air compressor of a pneumatic tanker pumping unit for sewage. Source: Honsel
More
Image
Published: 01 January 2015
Fig. 3.20 Forged compressor disc or wheel made from the near-alpha alloy IMI 685
More
Image
Published: 30 November 2013
Fig. 5 Example of well-formed striations in a forged high-pressure compressor blade made of titanium alloy. The striation density is approximately 30,000 striations/in. (~3.3 × 10 –5 in./striation). The arrow denotes the crack propagation direction.
More
Image
Published: 30 November 2013
Fig. 11 First-stage compressor blades that fractured due to corrosion fatigue originating in corrosion pits like those shown in Fig. 10 . Note that (a) had one fatigue origin (arrow) on the mid-pressure side (5×; shown at 70%). Arrows in (b) show fatigue origins on both the suction
More
Image
in Failure of Aircraft Engine Compressor Rotors
> Failure Analysis of Engineering Structures: Methodology and Case Histories
Published: 01 October 2005
Fig. CH21.1 A view of the compressor rotor A showing the third- and fourth-stage blades sheared at their roots
More
Image
in Failure of Aircraft Engine Compressor Rotors
> Failure Analysis of Engineering Structures: Methodology and Case Histories
Published: 01 October 2005
Fig. CH21.3 A view of compressor rotor B showing blades sheared in the first four stages
More
Image
in Failure of a First-Stage Compressor Blade in an Aircraft Engine
> Failure Analysis of Engineering Structures: Methodology and Case Histories
Published: 01 October 2005
Fig. CH22.1 Failed compressor blade showing beach marks indicative of fatigue
More
Image
in Failure of a First-Stage Compressor Blade in an Aircraft Engine
> Failure Analysis of Engineering Structures: Methodology and Case Histories
Published: 01 October 2005
Fig. CH27.1 Failed first-stage compressor blade
More
Image
in Failure of a Second-Stage Compressor Blade in an Aircraft Engine
> Failure Analysis of Engineering Structures: Methodology and Case Histories
Published: 01 October 2005
Fig. CH29.1 Second-stage compressor blade failed in an engine, along with the adjacent blades
More
Image
in Secondary Working of Bar and Billet[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 10.2 Fan blades, compressor discs, and many other engine components use forged titanium parts.
More
1