Skip Nav Destination
Close Modal
Search Results for
Complex failures
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 609 Search Results for
Complex failures
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130087
EISBN: 978-1-62708-284-6
.... The classical organization for types of damage (failures) is as follows: deformation, fracture, wear, corrosion or other environmental damage, and multiple or complex damage. The chapter also provides some examples of lack of conformance to specification that may at first look like the heat treater did...
Abstract
This chapter reviews various ways to classify failure categories and summarizes the basic types, causes, and mechanisms of damage, with particular consideration given to whether the likelihood of the types of damage can or cannot be influenced by the heat treating of steel parts. The classical organization for types of damage (failures) is as follows: deformation, fracture, wear, corrosion or other environmental damage, and multiple or complex damage. The chapter also provides some examples of lack of conformance to specification that may at first look like the heat treater did something wrong, but where other contributing factors made it difficult or impossible for the heat treater to meet the specification.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630237
EISBN: 978-1-62708-270-9
... Abstract Elevated-temperature failures are the most complex type of failure because all of the modes of failures can occur at elevated temperatures (with the obvious exception of low-temperature brittle fracture). Elevated-temperature problems are real concerns in industrial applications...
Abstract
Elevated-temperature failures are the most complex type of failure because all of the modes of failures can occur at elevated temperatures (with the obvious exception of low-temperature brittle fracture). Elevated-temperature problems are real concerns in industrial applications. The principal types of elevated-temperature failure mechanisms discussed in this chapter are creep, stress rupture, overheating failure, elevated-temperature fatigue, thermal fatigue, metallurgical instabilities, and environmentally induced failure. The causes, features, and effects of these failures are discussed. The cooling techniques for preventing elevated-temperature failures are also covered.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110550
EISBN: 978-1-62708-247-1
... these 2.5D and 3D packages. This article focuses on these methods of fault isolation, non-destructive imaging, and destructive techniques through an iterative process for failure analysis of complex packages. 2.5D packaging 3D packaging destructive techniques failure analysis fault isolation non...
Abstract
The complexity of semiconductor chips and their packages has continuously challenged the known methods to analyze them. With larger laminates and the inclusion of multiple stacked die, methods to analyze modern semiconductor products are being pushed toward their limits to support these 2.5D and 3D packages. This article focuses on these methods of fault isolation, non-destructive imaging, and destructive techniques through an iterative process for failure analysis of complex packages.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180029
EISBN: 978-1-62708-256-3
... Abstract Many companies conduct only metallurgical evaluations in the wake of failures, discovering nothing more than the physical mechanism by which the failure occurred. The origin of failures, however, is often complex, involving not only physical mechanisms, but also human behavior...
Abstract
Many companies conduct only metallurgical evaluations in the wake of failures, discovering nothing more than the physical mechanism by which the failure occurred. The origin of failures, however, is often complex, involving not only physical mechanisms, but also human behavior and latent factors. Failures may also involve multiple parts, entire machines, or processes of any size and shape. The chapter examines the unique aspects of many failures and explains how they can sometimes be traced to systemic issues. It also covers the reasons why products fail, including improper service or operation, improper maintenance, improper testing, assembly errors, fabrication or manufacturing errors, and design errors. The case of the Tacoma Narrows Bridge collapse is presented to illustrate the consequence of overlooked factors, in this case, wind dynamics, and the importance of identifying root causes to prevent repeat failures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110673
EISBN: 978-1-62708-247-1
... activities Introduction The design, fabrication, reliability, and analysis of semiconductor components has become an increasingly complex task. Today’s engineer is called on to pull “a rabbit out of a hat.” Every year, the feature sizes get smaller, the designs get bigger, and the customer wants...
Abstract
Education and training play an important role if the failure analyst is to be successful in his or her work. This article discusses the history of training activities in the failure/product analysis discipline and describes where this area is heading. It provides information on three areas of education and training that should be given to the analyst for him or her to be successful developing and fielding modern semiconductor components: analysis process, technology, and technique training.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630xvi
EISBN: 978-1-62708-270-9
... Abstract Designs and materials continue to become more complex, with novel technologies developed to create them, and novel instruments invented to analyze them. Engineers at all stages of the design and manufacturing process should appreciate the reasons why formal failure analysis...
Abstract
Designs and materials continue to become more complex, with novel technologies developed to create them, and novel instruments invented to analyze them. Engineers at all stages of the design and manufacturing process should appreciate the reasons why formal failure analysis is performed. This chapter describes why failure analysis is conducted and outlines the responsibilities of the failure analyst.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110062
EISBN: 978-1-62708-247-1
... are small and are typically obscured by other feature in the packaging when viewed from almost any angle. Therefore, as the complexity of packaging components increases, 3D X-ray micro-CT imaging technique starts to play an increasingly important role in the failure analysis laboratory. Figure 7...
Abstract
X-ray imaging systems have long played a critical role in failure analysis laboratories. This article begins by listing several favorable traits that make X-rays uniquely well suited for non-destructive evaluation and testing. It then provides information on X-ray equipment and X-ray microscopy and its application in failure analysis of integrated circuit (IC) packaging and IC boards. The final section is devoted to the discussion on nanoscale 3D X-ray microscopy and its applications.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780019
EISBN: 978-1-62708-268-6
... systems work: Interviewing the system designers and development engineers is a great place to start. Most systems are complex, and it may be that no single engineer knows how the entire system is supposed to work. The failure analysis team may have to interview mechanical, electrical, and software...
Abstract
A system failure occurs when a system does not do what it is supposed to do when it is supposed to do it, or it does something it is not supposed to do. This chapter provides a basic understanding of how failures occur, how systems operate, and the types of failures, namely intermittent and inadvertent system failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270031
EISBN: 978-1-62708-301-0
... fractography failure mode and effect analysis WITH THE EVOLUTION of the methodology of failure analysis, and keeping pace with the complexities of failures in modern intricate machines and structures, newer techniques have been established for carrying out the various stages of failure analysis. Some...
Abstract
This chapter discusses some of the more advanced methods and procedures used in failure analysis, including in-service material sampling, in situ microstructure analysis, and a form of punch testing that can determine the fracture toughness of any material from a tiny specimen. The chapter also covers quantitative fractography, fracture surface topography analysis, and the use of oxide dating as well as fault tree and failure modes and effects analysis (FMEA) and computational techniques.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180151
EISBN: 978-1-62708-256-3
... all the primary parts of the aircraft were aboard at the time that it crashed. Providing an inventory, although painstaking, is often invaluable. The cause of a complex aircraft accident was determined by an experienced investigator when he observed that a portion of one wing tip was missing from...
Abstract
This appendix focuses on procedures, techniques, and precautions associated with the investigation and analysis of metallurgical failures that occur in service. It describes the steps of an orderly failure analysis from collecting and examining samples to performing mechanical and nondestructive tests, preparing and examining fractographs and micrographs, determining failure mode, writing the report, and developing follow-up recommendations. It also examines the fundamental mechanisms of failure, why they occur, and how to identify them by their characteristic features.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320049
EISBN: 978-1-62708-332-4
... deteriorate because of prolonged exposure to the environment. The assumption made in the analysis is approximate. Geometry changes that can cause stress concentration affect the assumed value of the yield stress. Even the failure criteria assumptions and the finite element analysis (FEA) of complex...
Abstract
This chapter provides an overview of how the disciplines of design, material, and manufacturing contribute to engineering for functional performance. It describes the interaction of product designers and casting engineers in product development. It discusses the consequences of component failure, uncertainty in data and assumptions, and selection of the factor of safety. The chapter also presents an overview of the functional requirements for product performance and provides an overview of product design development. It also presents a partial list of the different tests that are performed on prototypes and examples of product testing. The chapter describes the requirements of a traceability system.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110001
EISBN: 978-1-62708-247-1
... Abstract This article introduces the wafer-level fault localization failure analysis (FA) process flow for an accelerated yield ramp-up of integrated circuits. It discusses the primary design considerations of a fault localization system with an emphasis on complex tester-based applications...
Abstract
This article introduces the wafer-level fault localization failure analysis (FA) process flow for an accelerated yield ramp-up of integrated circuits. It discusses the primary design considerations of a fault localization system with an emphasis on complex tester-based applications. The article presents examples that demonstrate the benefits of the enhanced wafer-level FA process. It also introduces the setup of the wafer-level fault localization system. The application of the wafer-level FA process on a 22 nm technology device failing memory test is studied and some common design limitations and their implications are discussed. The article presents a case study and finally introduces a different value-add application flow capitalizing on the wafer-level fault localization system.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110379
EISBN: 978-1-62708-247-1
... Abstract With semiconductor device dimension continuously scaling down and increasing complexity in integrated circuits, delayering techniques for reverse engineering is becoming increasingly challenging. The primary goal of delayering in semiconductor failure analysis is to successfully remove...
Abstract
With semiconductor device dimension continuously scaling down and increasing complexity in integrated circuits, delayering techniques for reverse engineering is becoming increasingly challenging. The primary goal of delayering in semiconductor failure analysis is to successfully remove layers of material in order to locate and identify the area of interest. Several of the top-down delayering techniques include wet chemical etching, dry reactive ion etching, top-down parallel lapping (including chemical-mechanical polishing), ion beam milling and laser delayering techniques. This article discusses the general procedure, types, advantages, and disadvantages of each of these techniques. In this article, two types of different semiconductor die level backend of line technologies are presented: aluminum metallization and copper metallization.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500249
EISBN: 978-1-62708-317-1
... Abstract Sheet metal spinning is a forming technique that produces axially symmetric hollow bodies with nearly any contour. It is often used in combination with flow forming and shear spinning to manufacture a wide range of complex parts. This chapter describes the operating principles, stress...
Abstract
Sheet metal spinning is a forming technique that produces axially symmetric hollow bodies with nearly any contour. It is often used in combination with flow forming and shear spinning to manufacture a wide range of complex parts. This chapter describes the operating principles, stress states, and failure modes of each process along with typical applications and tooling requirements.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030223
EISBN: 978-1-62708-349-2
... The honeycomb sandwich structure composite is a very efficient and complex structure widely used in the aircraft industry. Honeycomb-cored sandwich panels increase part stiffness at a lower weight than monolithic composite materials. This chapter describes the analysis of the intermingling of the film adhesive...
Abstract
The honeycomb sandwich structure composite is a very efficient and complex structure widely used in the aircraft industry. Honeycomb-cored sandwich panels increase part stiffness at a lower weight than monolithic composite materials. This chapter describes the analysis of the intermingling of the film adhesive/prepreg resin system. It discusses the causes and effects of honeycomb core movement, which results in core crush. The chapter also explains the formation of a void in honeycomb composites and the failure mechanisms in honeycomb sandwich structure composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420231
EISBN: 978-1-62708-310-2
... by Gibbs energy changes. It plots the energy of formation for many important metal oxides and explains how to construct isothermal stability diagrams to analyze complex reactions involving metals, alloys, and gases containing more than one reactive component. gas-metal systems isothermal stability...
Abstract
Gas-metal reactions can have a significant impact on metals and alloys, affecting their properties (during processing) and accelerating service failures, particularly in hot, corrosive environments. This chapter discusses the kinetics of gas-metal reactions and how they are driven by Gibbs energy changes. It plots the energy of formation for many important metal oxides and explains how to construct isothermal stability diagrams to analyze complex reactions involving metals, alloys, and gases containing more than one reactive component.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700107
EISBN: 978-1-62708-279-2
... maximum stress versus number of cycles to failure for a tension-tension loading ratio R = 0.1. Fig. 6.3 E ngineering stress-strain curves for a series of CP steel types. Source: Ref 6.3 Fig. 6.4 T rue stress-strain curves for a series of CP steel types. Source: Ref 6.3 Chapter 6: Complex-Phase Steels...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.9781627082792
EISBN: 978-1-62708-279-2
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780057
EISBN: 978-1-62708-268-6
... ) * ( 3.2 × 10 − 6 ) = 3.64 × 10 − 6 The situation becomes more complex when considering more than two inputs into an OR gate. As stated previously, the probability of the command event occurring above an OR gate is equal to the sum of the probabilities of each event...
Abstract
Quantifying a fault-tree analysis is a useful tool for assessing the most likely causes of a system failure. This chapter addresses fault-tree analysis event probabilities and ranking of failure causes based on these probabilities. Failure rates, failure-rate sources, probability determinations, mean times between failure, and related topics are also discussed. The discussion covers the practices observed in fault-tree analysis quantification and processes involved in calculating the probability of the top undesired event.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110025
EISBN: 978-1-62708-247-1
... complexity of layers and a multitude of materials. This limits access to the defect site, making it difficult to determine a failure’s root cause. Figure 1 also demonstrates the trends within packaging technologies towards shrinking dimensions. The integration of individual components into the board layer...
Abstract
In embedded systems, the separation between system level, board level, and individual component level failure analysis is slowly disappearing. In order to localize the initial defect area, prepare the sample for root cause analysis, and image the exact root cause, the overall functionality has to be maintained during the process. This leads to the requirement of adding additional techniques that help isolate and image defects that are buried deeply within the board structure. This article demonstrates an approach of advanced board level failure analysis by using several non-destructive localization techniques. The techniques considered for advanced fault isolation are magnetic current imaging for shorts and opens; infrared thermography for electrical shorts; time-domain-reflectometry for shorts and opens; scanning acoustic microscopy; and 2D/3D X-Ray microscopy. The individual methods and their operational principles are introduced along with case studies that will show the value of using them on board level defect analysis.