Skip Nav Destination
Close Modal
Search Results for
Cast aluminum alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 635 Search Results for
Cast aluminum alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870259
EISBN: 978-1-62708-299-0
...Abstract Abstract This appendix includes composition limit data for aluminum castings and ingots. aluminum alloys cast aluminum alloys chemical composition ingots Composition limits for unalloyed and alloyed aluminum castings (<italic>xxx</italic>.0) and ingots (<italic>xxx...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190035
EISBN: 978-1-62708-296-9
...Intermetallic phases in the aluminum corner of the Al-Cr equilibrium phase diagram Table 2.1 Intermetallic phases in the aluminum corner of the Al-Cr equilibrium phase diagram Designation Ref Designation in Fig. 2.3 Al 4 Cr, μ 4 – 11 μ Cr Al 11 Cr 2 , A l5 Cr, η η Cr...
Abstract
Structurally differentiated intermetallic phases are important constituents in the microstructure of aluminum alloys, with the potential to influence properties, behaviors, and processing characteristics. These phases can form in aluminum-silicon alloys with transition metals (Fe, Mn, Ni, Cr, V, Ti) and with metals such as Mg and Cu. This chapter is a compilation of phase diagrams, microstructure images, and tables, providing information on more than 30 binary, ternary, and quaternary alloy systems associated with intermetallic phases in aluminum-silicon castings. Each section includes tabular information and data on the intermetallic phases in the aluminum corner of the equilibrium phase diagram, the characteristics of the crystal lattice of intermetallic phases, the chemical composition of the alloy intermetallic phases, and equilibrium reactions in the alloy system.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140007
EISBN: 978-1-62708-335-5
...Abstract Abstract Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought...
Abstract
Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys. This chapter provides information on specifications and widely used designation systems and alloy nomenclature for aluminum casting alloys. It describes the composition of seven basic families of aluminum casting alloys: aluminum-copper, aluminum-silicon-copper, aluminum-silicon, aluminum-silicon-magnesium, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The chapter discusses the effects of alloying elements on the properties of cast aluminum. It provides information on various alloys that are grouped with respect to their applications or major performance characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170351
EISBN: 978-1-62708-297-6
... treat 280–560 40–80 Strength ranges of various cast aluminum alloys Table 3 Strength ranges of various cast aluminum alloys Alloy system (AA designation) Tensile strength range MPa ksi Heat treatable sand cast alloys (various tempers) Al-Cu (201–206) 353–467 51–68...
Abstract
This article discusses the composition, structures, properties, and behaviors of aluminum alloys and explains how they correspond to specific alloying elements. It begins with an overview of the general characteristics of wrought and cast aluminum alloys, the four-digit classification system by which they are defined, and the applications for which they are suited. It then explains how primary alloying elements, second-phase constituents, and impurities affect yield strength, phase formation, and grain size and how they induce structural changes that help refine certain alloys. The article also explains how primary alloying elements affect corrosion and wear behaviors and how they influence fabrication processes such as forming, forging, welding, brazing, and soldering.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870001
EISBN: 978-1-62708-299-0
... Selected applications for aluminum casting alloys Table 14 Selected applications for aluminum casting alloys Alloy Representative applications 100.0 Electrical rotors larger than 152 mm (6 in.) in diameter 201.0 Structural members; cylinder heads and pistons; gear, pump, and aerospace...
Abstract
Aluminum is the second most widely used metal in the world. It is readily available, offers a wide range of properties, and can be shaped, coated, and joined using a variety of methods. This chapter discusses some of the key attributes of wrought and cast aluminum alloys and the classifications, designations, and grades of available product forms. It also explains how aluminum alloys are used in aerospace, automotive, rail, and marine applications as well as in building and construction, electrical products, manufacturing equipment, packaging, and consumer durables such as appliances and furniture.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250039
EISBN: 978-1-62708-345-4
... metallurgy irons and steels, stainless steels, and tool steels. In terms of nonferrous alloys, the chapter addresses copper-base alloys, die cast aluminum alloys, zinc alloys, and magnesium alloys. alloy steel bending fatigue strength carbon steel cast iron copper alloys die cast aluminum alloys...
Abstract
This chapter describes important requirements for ferrous and nonferrous alloys used for gears. Wrought surface-hardening and through-hardening carbon and alloy steels are the most widely used of all gear materials and are emphasized in this chapter. The processing characteristics of gear steels and the bending fatigue strength and properties of carburized steels are reviewed. In addition to wrought steels, the chapter provides information on the other iron-base alloys that are used for gears, namely cast carbon and alloy steels, gray and ductile cast irons, powder metallurgy irons and steels, stainless steels, and tool steels. In terms of nonferrous alloys, the chapter addresses copper-base alloys, die cast aluminum alloys, zinc alloys, and magnesium alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.9781627083355
EISBN: 978-1-62708-335-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190089
EISBN: 978-1-62708-296-9
... microstructure. References References 1. PN EN 1706-Aluminum and aluminum alloys . Cast parts. Chemical composition and mechanical properties. 2. Aluminum and Aluminum Alloys , ASM Specialty Handbook , ed Davis J.R. , ASM International 1993 , ISBN: 0-87 170-496-X 10.31399/asm.hb.v09...
Abstract
This chapter is an atlas of microstructures observed in AlSi7Mg, AlSi11, and Al21CuNiMg modified with either eutectic (strontium, sodium) or hypereutectic (phosphorus) silicon crystals. The microstructure images reveal the as-cast state of gravity castings made in sand and metal molds, before and after modification. The chapter also provides composition data and includes callouts identifying various phase constituents in the interdendritic eutectic microstructure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.9781627082969
EISBN: 978-1-62708-296-9
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190001
EISBN: 978-1-62708-296-9
... Fig. 1.22 Silicon crystal morphology as affected by driving force in dependence on the roughness coefficient α sJ value. Source: Ref 38 Fig. 1.30 Morphology of the primary silicon crystals in the hypereutectic aluminum-silicon alloy. (a) As-cast state, nonmodified. (b) As-cast state...
Abstract
This chapter serves as a study and guide on the main phase constituents of cast aluminum-silicon alloys, alpha-Al solid solution and Si crystals. The first section focuses on the structure of Al-Si castings in the as-cast state, covering the morphology of the alpha-Al solid solution grains and the process by which they form. It describes how cooling rates, temperature gradients, and local concentrations influence the topology of the crystallization front, and how they play a role in determining the morphology and dispersion degree of the grains observed in cross sections of cast parts. It also describes the mechanism behind dendritic grain crystallization and how factors such as surface tension, capillary length, and lattice symmetry affect dendritic arm size and spacing. The section that follows examines the morphology of the silicon crystals that form in aluminum-silicon castings and its effect on properties and processing characteristics. It discusses the faceted nature of primary Si crystals and the modification techniques used to optimize their shape. It also describes the morphology of the (alpha-Al + Si) eutectic, which can be lamellar or rodlike in shape, and explains how it can be modified through temperature control or alloy additions to improve properties such as tensile strength and plasticity and reduce shrinkage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140299
EISBN: 978-1-62708-335-5
... Abstract This appendix contains abbreviations and symbols related to aluminum alloy castings. aluminum alloy castings aluminum alloys symbols ...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140069
EISBN: 978-1-62708-335-5
...Abstract Abstract This chapter reviews and provides data tables for the wide range of properties and performance characteristics that are possible with specific aluminum casting alloys and tempers. Properties and performance attributes addressed include casting and finishing characteristics...
Abstract
This chapter reviews and provides data tables for the wide range of properties and performance characteristics that are possible with specific aluminum casting alloys and tempers. Properties and performance attributes addressed include casting and finishing characteristics; typical physical properties; typical and minimum (design) mechanical properties; fatigue strength; fracture resistance, including subcritical crack growth; and resistance to general corrosion and to stress-corrosion cracking. The chapter concludes with information on the properties of cast aluminum matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410091
EISBN: 978-1-62708-280-8
...Abstract Abstract This chapter is a collection of tables listing: cast alloy designations of Aluminum Association, along with their general applications; the chemical compositions of the frequently used alloys for gravity permanent molds, low-pressure permanent molds, squeeze castings, and die...
Abstract
This chapter is a collection of tables listing: cast alloy designations of Aluminum Association, along with their general applications; the chemical compositions of the frequently used alloys for gravity permanent molds, low-pressure permanent molds, squeeze castings, and die castings; the typical tensile properties of die cast alloys; and the designations of different heat treatments and their description. The tables also list the temperatures and times of typical heat treatment cycles for different permanent mold cast alloys; typical components in sand, gravity, and low-pressure permanent mold castings and die castings, the functional requirements of each process, and the corresponding suitable alloys and heat treatments; and alloys that are high vacuum die cast for structural castings. The chapter also presents examples of photomicrographs of some alloys cast by different processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140293
EISBN: 978-1-62708-335-5
...Abstract Abstract This appendix is a compilation of terms and definitions related to cast aluminum products, their production, and their properties. aluminum alloy castings aluminum alloys cast aluminum alloys The following list of terms is associated primarily with cast aluminum...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140299
EISBN: 978-1-62708-335-5
...Abstract Abstract This appendix contains abbreviations and symbols related to aluminum alloy castings. aluminum alloy castings aluminum alloys symbols ...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140039
EISBN: 978-1-62708-335-5
... of hypereutectic aluminum-silicon alloys. aluminum alloy castings dendrite arm spacing eutectic modification grain shape grain size intermetallic phases microstructure phase refinement Microstructural features are products of metal chemistry and solidification conditions. The microstructural...
Abstract
In castings, microstructural features are products of metal chemistry and solidification conditions. The microstructural features, excluding defects, that most strongly affect the mechanical properties or aluminum castings are size, form, and distribution of intermetallic phases; dendrite arm spacing; grain size and shape; and eutectic modification and primary phase refinement. This chapter discusses the effects of these microstructural features on properties and methods for controlling them. The chapter concludes with a detailed examination of the refinement of hypereutectic aluminum-silicon alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140301
EISBN: 978-1-62708-335-5
...Abstract Abstract This appendix contains drawings that illustrate the test specimens used in generating the data related to aluminum alloy castings. aluminum alloy castings aluminum alloys test specimens The following drawings illustrate the test specimens used in generating...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140055
EISBN: 978-1-62708-335-5
..., and disadvantages of HIP. It describes the effect of HIP on tensile properties and on the fatigue performance of aluminum alloy castings. In addition, the chapter discusses the processes involved in radiographic inspection of HIP-processed castings. aluminum alloys castings fatigue performance hot...
Abstract
Hot isostatic pressing (HIP) is a process refinement available to address internal porosity in castings. The HIP process may be used, in particular, for applications requiring very high quality and performance. This chapter discusses the principles, advantages, and disadvantages of HIP. It describes the effect of HIP on tensile properties and on the fatigue performance of aluminum alloy castings. In addition, the chapter discusses the processes involved in radiographic inspection of HIP-processed castings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140021
EISBN: 978-1-62708-335-5
...Abstract Abstract This chapter begins with information on the historical development of aluminum alloy castings. It then covers the basic factors involved in the selection of a casting process. This is followed by sections describing the various categories of casting processes...
Abstract
This chapter begins with information on the historical development of aluminum alloy castings. It then covers the basic factors involved in the selection of a casting process. This is followed by sections describing the various categories of casting processes and their variants: expendable mold gravity-feed casting, nonexpendable (permanent) mold gravity feed casting, and pressure die casting. Next, the chapter describes the technologies used to produce premium engineered castings and when such castings may be relevant. The chapter concludes with descriptions of other process technologies used with castings, including metallurgical bonding, metal-matrix composites, and hot isostatic pressing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140001
EISBN: 978-1-62708-335-5
... on the advantages and limitations of aluminum castings. Next, the chapter describes the major trends that are influencing the increased use of aluminum castings. Finally, it introduces the considerations involved in the selection of an appropriate aluminum alloy and casting process for a given application...
Abstract
This chapter first introduces the various factors that may alter the physical and mechanical properties of aluminum castings that are addressed in the other chapters in the book. Then, it presents the historical development of aluminum castings, followed by a discussion on the advantages and limitations of aluminum castings. Next, the chapter describes the major trends that are influencing the increased use of aluminum castings. Finally, it introduces the considerations involved in the selection of an appropriate aluminum alloy and casting process for a given application.