1-20 of 547 Search Results for

Bending fatigue

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140253
EISBN: 978-1-62708-335-5
... Abstract This data set contains the results of rotating-beam reversed-bending fatigue tests for a wide range of aluminum casting alloys. These fatigue curves are the results of tests on individual lots of material considered representative of the respective alloys and tempers. aluminum...
Image
Published: 01 June 1985
Fig. 4-6. Helical gear, 1.12×. Tooth bending fatigue followed by tooth bending impact. Origin is off-center of the tooth midpoint but is directly above the center of the web. More
Image
Published: 01 March 2006
Fig. 3.1 Wöhler’s rotating-cantilever, bending fatigue-testing machine. D , drive pulley; C , arbor; T , tapered specimen butt; S , specimen; a , moment arm; G , loading bearing; P , loading spring. Source: Ref 3.2 More
Image
Published: 01 March 2006
Fig. 11.34 The effect of various machining processes on the bending fatigue strength of Ti-5Al-2.5Sn alloy. Source: Ref 11.40 More
Image
Published: 01 March 2006
Fig. 11.61 The effect of grinding and peening on reverse-bending fatigue strengths of flat steel bars (hardness 45 HRC, or 421 HB). Source: Ref 11.70 More
Image
Published: 01 December 2000
Fig. 5.16 Core hardness vs. bending fatigue strength of gear tooth More
Image
Published: 01 December 2000
Fig. 5.17 Austenitic grain size and bending fatigue strength of a typical gear steel More
Image
Published: 01 December 2000
Fig. 5.27 Influence of retained austenite on bending fatigue strength More
Image
Published: 01 December 2000
Fig. 6.5 Bending-fatigue life of original and damaged carburized and hardened gears More
Image
Published: 01 December 2000
Fig. 6.6 Bending-fatigue life of original and damaged nitrided gears More
Image
Published: 01 December 1999
Fig. 5.21 Hardness, retained austenite, microcrack density, and bending fatigue curves for carburized and hardened SAE 8620 steel quenched by three methods: direct quench, ASTM 1-3 grain size; single reheat, ASTM 4-5 grain size; double reheat. Source: Ref 43 More
Image
Published: 01 December 1999
Fig. 5.44 Rotating bending fatigue of samples initiated by B (alumina, irregular), D (calcium aluminate, spherical), and T (titanium carbonitride, cuboid) type inclusions in an SAE 52100 steel. Source: Ref 65 More
Image
Published: 01 December 1999
Fig. 6.30 Effect of nickel content and case depth on the bending fatigue strength of case-hardened steels. Source: Ref 36 More
Image
Published: 01 December 1999
Fig. 6.38 Alternating bending fatigue strength of carburized test pieces in relation to case depth and section ratio. (a) 6 mm diam. (b) 12 mm diam. Source: Ref 40 More
Image
Published: 01 December 1999
Fig. 7.13 Effect of tempering temperature on the alternating bending fatigue strength of 6 mm diam case-hardened test pieces. Carburized at 930 °C for 1 h, water quenched, reheated to 850 °C for 10 minutes, and oil quenched. Note: Ck15 steel was water quenched from 850 °C. Source: Ref 25 More
Image
Published: 01 December 1999
Fig. 7.15 Bending-fatigue strength of notched test pieces with and without retained austenite. Source: Ref 29 More
Image
Published: 01 December 1999
Fig. 7.16 Effect of tempering on the alternating bending-fatigue strength of two case-hardened steels. Source: Ref 25 More
Image
Published: 01 December 1999
Fig. 7.26 Bending-fatigue strength of a carburized SAE 8620 steel (6.35 mm diam). Source: Ref 47 More
Image
Published: 01 December 1999
Fig. 8.14 Comparison of bending fatigue strength of conventionally processed (cut/harden/lap) versus CBN ground (cut/harden/lap) spiral bevel gears. Test gear design specifications: hypoid design, 4.286 dp, 11 by 45 ratio, 1.60 in. face. Gears were installed in axles using a 4-square loaded More
Image
Published: 01 December 1999
Fig. 8.16 Effect of local case thinning by grinding on the bending fatigue strength of Ni-Cr steel gear teeth. Source: Ref 16 More