Skip Nav Destination
Close Modal
Search Results for
Aluminum casting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1557 Search Results for
Aluminum casting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410001
EISBN: 978-1-62708-280-8
... Abstract Casting is one of the most economical manufacturing processes for providing shape to components of machinery and is used in a wide range of industries. This chapter is a brief account of the advantages, applications, limitations, and market growth of aluminum casting. It also provides...
Abstract
Casting is one of the most economical manufacturing processes for providing shape to components of machinery and is used in a wide range of industries. This chapter is a brief account of the advantages, applications, limitations, and market growth of aluminum casting. It also provides information on the process of conversion of steel and iron parts to aluminum.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140007
EISBN: 978-1-62708-335-5
... Abstract Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys...
Abstract
Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys. This chapter provides information on specifications and widely used designation systems and alloy nomenclature for aluminum casting alloys. It describes the composition of seven basic families of aluminum casting alloys: aluminum-copper, aluminum-silicon-copper, aluminum-silicon, aluminum-silicon-magnesium, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The chapter discusses the effects of alloying elements on the properties of cast aluminum. It provides information on various alloys that are grouped with respect to their applications or major performance characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140021
EISBN: 978-1-62708-335-5
... Abstract This chapter begins with information on the historical development of aluminum alloy castings. It then covers the basic factors involved in the selection of a casting process. This is followed by sections describing the various categories of casting processes and their variants...
Abstract
This chapter begins with information on the historical development of aluminum alloy castings. It then covers the basic factors involved in the selection of a casting process. This is followed by sections describing the various categories of casting processes and their variants: expendable mold gravity-feed casting, nonexpendable (permanent) mold gravity feed casting, and pressure die casting. Next, the chapter describes the technologies used to produce premium engineered castings and when such castings may be relevant. The chapter concludes with descriptions of other process technologies used with castings, including metallurgical bonding, metal-matrix composites, and hot isostatic pressing.
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.1 201.0-T6 aluminum casting, tensile stress-strain curves, various casting processes Effect of casting process. Heat treatment: 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 20 h at 154 °C (310 °F), air cooled. Average mechanical
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.4 201.0-T7 aluminum casting, tensile stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 5 h at 188 °C (370 °F), air cooled. Average mechanical
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.7 201.0-T43 aluminum casting, tensile stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 0.5 h at 154 °C (310 °F), air cooled. Average
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.22 A356.0-T6 aluminum casting, tensile stress-strain curves, various casting processes Effect of molding process. Heat treatment, 12 h at 538 °C (1000 °F), water quench, 12–24 h delay at room temperature, 3 h at 154 °C (310 °F), and air cooled. Average mechanical properties
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.27 A357.0-T6 aluminum casting, tensile stress-strain curves, various casting processes Effect of molding process. Heat treatment, 12 h at 538 °C (1000 °F), water quench, 12–24 h delay at room temperature, 5 h at 177 °C (350 °F), and air cooled. Average mechanical properties
More
Image
Published: 01 December 2018
Image
Published: 01 March 2012
Fig. B.11 Effect of secondary dendrite arm spacing on properties of aluminum casting alloy. Source: Ref B.5 as published in Ref B.2
More
Image
Published: 01 October 2012
Image
in Properties and Performance of Aluminum Castings
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 8.10 Relative rankings of notch toughness of aluminum casting alloys based upon notch-yield ratio. (a) Sand castings. (b) Permanent mold castings. (c) Premium engineered castings
More
Image
in Properties and Performance of Aluminum Castings
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 8.12 Rankings of notch toughness of welds in aluminum casting alloys based upon notch-yield ratio for combinations of casting alloys and filler alloys (middle number)
More
Image
in Properties and Performance of Aluminum Castings
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 8.15 Notch-yield ratio versus tensile yield strength for aluminum casting alloys at –320 °F (–196 °C) and –423 °F (–253 °C)
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.2 201.0-T6 aluminum casting, compressive stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 20 h at 154 °C (310 °F), air cooled. Average
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.3 201.0-T6 aluminum casting, compressive tangent modulus curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 20 h at 154 °C (310 °F), air cooled. UNS A02010
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.5 201.0-T7 aluminum casting, compressive stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 5 h at 188 °C (370 °F), air cooled. Average
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.6 201.0-T7 aluminum casting, compressive tangent modulus curves, various casting processes Effect of casting process is illustrated. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 5 h at 188 °C (370 °F), air cooled
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.8 201.0-T43 aluminum casting, compressive stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 0.5 h at 154 °C (310 °F), air cooled. Average
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.9 201.0-T43 aluminum casting, compressive tangent modulus curves, various casting processes Effect of casting process is illustrated. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 0.5 h at 154 °C (310 °F), air
More