1-20 of 1914 Search Results for

Alloy steel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820013
EISBN: 978-1-62708-339-3
... Abstract Carbon and low-alloy steels are the most frequently welded metallic materials, and much of the welding metallurgy research has focused on this class of materials. Key metallurgical factors of interest include an understanding of the solidification of welds, microstructure of the weld...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930217
EISBN: 978-1-62708-359-1
.... The service properties of weldments in corrosive environments are considered and subjected to cyclic loading. The article summarizes the effects of major alloying elements in carbon and low-alloy steels on HAZ microstructure and toughness. It discusses the processes involved in controlling toughness...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320217
EISBN: 978-1-62708-332-4
... Abstract Steel is broadly classified as plain-carbon steels, low-alloy steels, and high-alloy steels. This chapter begins by describing microconstituents of low- and medium-carbon steel, including bainite and martensite. This is followed by a section discussing the effect of alloying elements...
Image
Published: 01 December 1995
Fig. 3-5 Grooved roll for steel mill of Cr-Mo alloy steel, 120 in. (3048 mm) roll face, 45 in. (1143 mm diameter, 74,940 lb (33,985 kg). Back-up roll suspended from overhead crane weighs 95,000 lb (43,082 kg). More
Image
Published: 01 January 2022
Fig. 12.66 Feeding distance for a high-alloy steel CF-8M compared with AISI 1025 steel; D R , diameter of the riser or feeder; FD, feeding distance. Source: Ref 27 More
Image
Published: 01 September 2008
Fig. 40 Hydrogen embrittlement failure of an ISO 10.9 low-alloy steel bolt grade. (a) As-received bolt. (b) Multiple initiation sites with secondary cracks evident. (c) Intergranular fracture along prior-austenite grain boundaries More
Image
Published: 01 September 2008
Fig. 64 ASTM B7 low-alloy steel bolt grade. Fracture initiated along threads, with typical and pronounced beach marks (i.e., cyclic fracture propagation) and transgranular fracture mode. (a) Location of bolts in pump coupling. (b) Beach marks showing asymmetrical bending with initiation More
Image
Published: 01 September 2008
Fig. 3 Lath (low-carbon) martensite in SAE 8620 alloy steel (Fe, 0.2% C, 0.8% Mn, 0.55% Ni, 0.5% Cr, 0.2% Mo) after heat treatment (954 °C, or 1750 °F, for 1 h, water quench) More
Image
Published: 01 October 2011
Fig. 9.15 Lath martensite in water-quenched low-alloy steel. 2% nital etch. Original magnification 500× Source: Ref 9.6 More
Image
Published: 01 August 2018
Fig. 9.15 Martensite in low alloy steel ASTM A533 Cl.1 (ASME SA 533 Cl 1 or 20MnMoNi55) with C = 0.2%, Mn = 1.38%, Si = 0.25%, Ni = 0.83%, Mo = 0.49% continuously cooled at 50 °C/s (90 °F/s). Transformation start temperature: 415 °C (780 °F). Etchant: Nital 2%. Courtesy of B. Marini, CEA More
Image
Published: 01 August 2018
Fig. 9.27 Bainite in low alloy steel ASTM A 533 Cl.1 (ASME SA 533 Cl 1 or 20MnMoNi55) containing C = 0.2%, Mn = 1.38%, Si = 0.25%, Ni = 0.83%, Mo = 0.49% (same steel as in Fig. 9.15 ) continuously cooled at 0.1 °C/s (0.18 °F/s). Transformation start at 590 °C (1094 °F). Etchant: nital 2 More
Image
Published: 01 August 2018
Fig. 9.28 Bainite in low alloy steel ASTM A 533 Cl.1 (ASME SA 533 Cl 1 or 20MnMoNi55) containing C = 0.2%, Mn = 1.38%, Si = 0.25%, Ni = 0.83%, Mo = 0.49% (same steel as in Fig. 9.15 ) continuously cooled at 2 °C/s (3.5 °F/s). Transformation start at 590 °C (1094 °F). Etchant: nital 2%. Prior More
Image
Published: 01 January 2017
Fig. 2.3 Transgranular hydrogen sulfide SCC of a low-alloy steel. Original magnification: 100×. Source: Ref 2.21 More
Image
Published: 01 January 2017
Fig. 3.38 Effect of pH on delayed failure stress for low-alloy steel in H 2 S saturated acetic acid solution containing sodium acetate buffer. Source: Ref 3.46 More
Image
Published: 01 January 2015
Fig. 10.11 Cooling transformation diagram for an alloy steel with 0.40% C, 1.50% Ni, 1.20% Cr, and 0.30% Mo, plotted as a function of bar diameter. Steel was austenitized at 850 °C (1562 °F); previous treatment: rolling, then softening at 650 °C (1202 °F). Source: Ref 10.9 More
Image
Published: 01 March 2002
Fig. 8.17 Water-quenched low-alloy steel showing clearly delineated prior austenite grain boundaries. Matrix is lath martensite. Marshall’s reagent. 200× More
Image
Published: 01 August 1999
Fig. 6.14 (Part 1) As-cast structures of cast steels. (a) to (d) 0.4% C alloy steel (0.41C-0.66Mn-0.35Si-0.012S-0.010P-1.88Ni-0.95Cr-0.28Mo, wt%). (a) As cast. Section parallel to dendritic growth direction. Hydrochloric acid (hot 50%). 15×. (b) Same area as (a). Phosphorus More
Image
Published: 01 March 2002
Fig. 2.32 Bainitic microstructure in a low-carbon alloy steel (0.3% C, 0.62% Mn, 0.2% Si, 2.73% Ni, 0.23% Cr, and 0.5% Mo). 4% picral + HCl etch. 500× More
Image
Published: 01 November 2007
Fig. 10.6 As-quenched and tempered hardnesses of plain carbon and alloy steel versus %C. ΔH represents the incremental increase in hardness between plain carbon steels and alloy steels with the same %C. More
Image
Published: 30 November 2013
Fig. 27 Reversed bending fatigue of an alloy-steel steering knuckle at a hardness level of 30 HRC with nonuniform application of stresses. The multiple-origin fatigue at the bottom was caused by the tendency of normal wheel loading to bend the spindle (lower right) of the knuckle upward More