Skip Nav Destination
Close Modal
Search Results for
Aerospace fasteners
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 133 Search Results for
Aerospace fasteners
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 2010
Image
Published: 01 October 2012
Fig. 8.52 Typical aerospace structural fasteners, (a) rivets, (b) pin and collar, (c) bolts and nuts, (d) blind fasteners. Source: Ref 8.1
More
Image
Published: 01 January 2015
Fig. 15.18 Blind titanium fastener and installation sequence. Courtesy of Aerospace Products Division, SPS Technologies
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870307
EISBN: 978-1-62708-314-0
... inserts, or steel with PCD inserts. 11.4 Fastener Selection and Installation Many types of fasteners are used in aerospace structural assembly, the most prevalent being solid rivets, pins with collars, bolts with nuts, and blind fasteners. Examples are shown in Fig. 11.17 . There are also many...
Abstract
This chapter covers basic machining and assembly operations, with an emphasis on hole preparation for mechanical fasteners. It describes manual, power feed, and automated drilling techniques as well as reaming and countersinking. It discusses various types of fasteners, including rivets, pins, and bolts, along with selection factors and special considerations for composite joints. It also includes information on interference-fit and blind fasteners as well as trimming operations, general assembly considerations, and sealing and painting procedures.
Image
Published: 01 October 2012
Fig. 1.13 Ti-6Al-4V engine nacelle component for the Boeing 757 aircraft. (a) Part as previously fabricated required 41 detail parts and more than 200 fasteners. (b) Superplastically formed part is formed from a single sheet. Courtesy of Metal Bellows Division of Parker Bertea Aerospace Group
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290207
EISBN: 978-1-62708-306-5
... steel, or stainless steel. Stainless steels include both iron- and nickel-based chromium alloys. Copper-based alloys of brass and bronze are often used for decorative applications or in applications where rusting is undesirable. Titanium fasteners have limited usage, primarily in the aerospace industry...
Abstract
This chapter presents a comprehensive coverage of mechanical fastening methods. It begins with a discussion on the advantages and disadvantages of mechanical fastening followed by sections providing information on mechanically fastened joints and the selection of the correct fastener system. The chapter then describes important structural fasteners, namely bolts, screws, pins, collar fasteners, rivets, blind fasteners, machine pins, and spring clip fasteners. The following sections describe the process involved in presses, shrink fits, hole generation, and fastener installation. The chapter ends with information on miscellaneous mechanical fastening methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120139
EISBN: 978-1-62708-269-3
... such as fasteners, foil, tubing, castings, and forgings. Ti-15-3 is used in a variety of airframe applications. It has also been evaluated for aerospace tankage applications, high-strength hydraulic tubing, and fasteners. Other beta alloys Ti-1.5Al-5.5Fe-6.8Mo, UNS: none, Timetal LCB Timetal LCB is a low...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460227
EISBN: 978-1-62708-285-3
... cold spraying has enjoyed a great deal of success in dimensional repair of magnesium and aluminum components for aerospace components ( Ref 9.2 , 9.4 – 9.6 ). Recent advancements have made it possible to repair other materials as well ( Ref 9.7 – 9.9 ). Development efforts have resulted in high...
Abstract
High-pressure cold spray repair process has been used on a number of different applications in the defense industry. This chapter describes various applications for cold spray systems that have operating pressures greater than 2.4 MPa (350 psi) and operating temperatures greater than 500 deg C (930 deg F).
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120295
EISBN: 978-1-62708-269-3
..., OH 44691 Tel: 800-321-4938 Fax: 330-263-1336 Manufacturer of titanium fasteners and small fabrications; precision parts for aerospace, medical, and dental applications U.S. Chrome Corp. 175 Garfield Ave. Stratford, CT 06615 Tel: 800-637-9019 Fax: 203-386-0067 Precision hard chromium...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060195
EISBN: 978-1-62708-355-3
...Required minimum length of fasteners for tensile testing Table 1 Required minimum length of fasteners for tensile testing Nominal product diam ( D ), mm Min length, mm 5 12 6 14 8 20 10 25 12 30 14 35 16 40 20 45 Over 20 3 D Source: Ref 3...
Abstract
This chapter focuses on tensile testing of three types of engineering components that undergo significant loading in tension, namely, threaded fasteners and bolted joints; adhesive joints; and welded joints. It describes the standardized tensile test for externally threaded fasteners and provides a brief background on relationships among torque, angle-of-turn, tension, and friction. The chapter also describes the test methods covered in the ASTM F 606M standard, namely, product hardness; proof load by length measurement, yield strength, or uniform hardness; axial tension testing of full-sized products; wedge tension testing of full-sized products; tension testing of machined test specimens; and total extension at fracture testing. Finally, the chapter covers tensile testing of adhesive and welded joints.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230441
EISBN: 978-1-62708-298-3
... Abstract This chapter explains how to join beryllium parts using adhesive bonding and mechanical fastening techniques and discusses the advantages and disadvantages of each method. It describes the stresses that need to be considered when designing adhesive bonds, the benefits and limitations...
Abstract
This chapter explains how to join beryllium parts using adhesive bonding and mechanical fastening techniques and discusses the advantages and disadvantages of each method. It describes the stresses that need to be considered when designing adhesive bonds, the benefits and limitations of different adhesives, and surface preparation requirements. It explains how adhesives are applied and cured and how curing times and temperatures affect bonding strength. It also discusses the use of bolts and rivets and the different types of joints that can be made with them.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610263
EISBN: 978-1-62708-303-4
... a significant influence on fatigue resistance. In order of decreasing fatigue strength, fabrication techniques are coin-dimpling, spin-dimpling, drilling, and machine countersinking. Cold Working and Interference Fits Many large structures are assembled with mechanical fasteners. In the aerospace...
Abstract
This chapter discusses the fatigue behavior of bolted, riveted, and welded joints. It describes the relative strength of machined and rolled threads and the effect of thread design, preload, and clamping force on the fatigue strength of bolts made from different steels. It explains where fatigue failures are likely to occur in cold-driven rivet and friction joints, and why the fatigue strength of welded joints can be much lower than that of the parent metal, depending on weld shape, joint geometry, discontinuities, and residual stresses. The chapter also explains how to improve the fatigue life of welded joints and discusses the factors that can reduce the fracture toughness of weld metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870449
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses the use of mechanical fastening and adhesive bonding, the primary methods for joining polymer matrix composites. It describes and analyzes the basic types of mechanically fastened joints, including single-hole and multirow bolted composite joints. It then reviews...
Abstract
This chapter discusses the use of mechanical fastening and adhesive bonding, the primary methods for joining polymer matrix composites. It describes and analyzes the basic types of mechanically fastened joints, including single-hole and multirow bolted composite joints. It then reviews the advantages and disadvantages of adhesively bonded joints and compares and contrasts the long-term performance of various joint designs. The chapter also discusses the merits of stepped-lap and bonded-bolted joints.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610377
EISBN: 978-1-62708-303-4
... of aerospace materials. Source: Ref 1 Assembly costs can account for as much as 50% of the cost of an airframe. Composites offer the opportunity to significantly reduce the amount of assembly labor and fasteners. Detail parts can be combined into a single cured assembly either during initial cure...
Abstract
Unlike metals, in which fatigue failures are due to a single crack that grows to a critical length, the effects of fatigue in composites are much more distributed and varied. As the chapter explains, there are five major damage mechanisms that contribute to the progression of composite fatigue, those being matrix cracking, fiber breaking, crack coupling, delamination initiation, and delamination growth. The chapter describes each mechanism in detail along with related factors. It also discusses the primary differences between composites and metals, the effect of manufacturing defects, damage tolerance, and testing and certification.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180029
EISBN: 978-1-62708-256-3
... to the cost of the bellows. The analysis showed that the aluminum wire had eroded through only one ply, and it was determined the bellows were acceptable for use. Interestingly, about four years ago, I was given a fastener fabricated from A286, an iron-base heat-resistant superalloy, that had been...
Abstract
Many companies conduct only metallurgical evaluations in the wake of failures, discovering nothing more than the physical mechanism by which the failure occurred. The origin of failures, however, is often complex, involving not only physical mechanisms, but also human behavior and latent factors. Failures may also involve multiple parts, entire machines, or processes of any size and shape. The chapter examines the unique aspects of many failures and explains how they can sometimes be traced to systemic issues. It also covers the reasons why products fail, including improper service or operation, improper maintenance, improper testing, assembly errors, fabrication or manufacturing errors, and design errors. The case of the Tacoma Narrows Bridge collapse is presented to illustrate the consequence of overlooked factors, in this case, wind dynamics, and the importance of identifying root causes to prevent repeat failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870489
EISBN: 978-1-62708-314-0
..., the activities of the IPD team during the design process. Topics covered include material selection, manufacturing process selection, initial trade studies to select the material and design concept, the building block approach to testing and certification used in the aerospace industry, design allowables...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480353
EISBN: 978-1-62708-318-8
... Abstract This chapter describes the applications with the greatest impact on titanium consumption and global market trends. It explains where, how, and why titanium alloys are used in aerospace, automotive, chemical processing, medical, and military applications as well as power generating...
Abstract
This chapter describes the applications with the greatest impact on titanium consumption and global market trends. It explains where, how, and why titanium alloys are used in aerospace, automotive, chemical processing, medical, and military applications as well as power generating equipment, sporting goods, oil and gas production, and marine vessels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550385
EISBN: 978-1-62708-307-2
..., including lighter weight, the ability to tailor lay-ups for optimum strength and stiffness, improved fatigue strength, corrosion resistance, and, with good design practice, reduced assembly costs due to fewer detail parts and fasteners. The specific strength (strength/density) and specific modulus (modulus...
Abstract
Polymer-matrix composites are among the lightest structural materials in use today. They are also highly resistant to corrosion and fatigue and their load-carrying capabilities, such as strength and stiffness, can be tailored for specific applications. This chapter discusses the primary advantages and disadvantages of polymer-matrix composites, how they are produced, and how they perform in different applications. It describes the construction of laminates, the fibers and resins used, and the methods by which they are combined. It explains how strength, modulus, toughness, and high-temperature and corrosion behaviors are determined by the orientation, shape, and spacing of fibers, the number of plies, resin properties, and consolidation and forming methods. The chapter also covers secondary fabrication processes, such as thermoforming, machining, and joining, as well as production equipment and product forms, and include guidelines for optimizing tradeoffs when selecting fibers, resins, and production techniques.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030245
EISBN: 978-1-62708-349-2
... cell wall. Bright-field illumination, 65mm macrophotograph Fig. 15.9 Micrograph showing the effect of electrical arcing between a titanium fastener and carbon fiber composite. Slightly uncrossed polarized light, 25× objective Fig. 15.10 Micrograph showing damage at the interface...
Abstract
Lightning damage in polymer composites, as in metal structures, is manifested by damage at both the macroscopic or visual level and within the material microstructure. In addition to visual damage assessment, non-destructive inspection techniques are employed to detect damage within the composite part. This chapter describes the macroeffects of a lightning strike on composites and discusses the methods involved in the assessment of microstructural damage in composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290279
EISBN: 978-1-62708-306-5
... and disassembly of the components for inspection and repair is straightforward. The main limitations are increased weight, the presence of large stress concentrations around the fastener holes, and potential in-service corrosion problems. The typical applications of mechanical fastening are in the aerospace...
Abstract
This chapter reviews materials issues encountered in joining, including challenges involved in welding of dissimilar metal combinations; joining of plastics by mechanical fastening, solvent and adhesive bonding, and welding; joining of thermoset and thermoplastic composite materials by mechanical fastening, adhesive bonding, and, for thermoplastic composites, welding; the making of glass-to-metal seals; and joining of oxide and nonoxide ceramics to themselves and to metals by solid-state processes and by brazing. The classification, types, applications, and the mechanism of each of these methods are covered. The factors influencing joint integrity and the main considerations in welding dissimilar metal combinations are also discussed.
1