Skip Nav Destination
Close Modal
Search Results for
Admiralty brass
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 35 Search Results for
Admiralty brass
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
in Effects of Metallurgical Variables on Dealloying Corrosion[1]
> Corrosion in the Petrochemical Industry
Published: 01 December 2015
Fig. 3 Uniform-layer dezincification in an admiralty brass 19 mm (3/4 in.) diameter heat-exchanger tube. The top layer of the micrograph, which consists of porous, disintegrated particles of copper, was from the inner surface of the tube that was exposed to water at pH 8.0, 31 to 49 °C (87 to 120
More
Image
Published: 01 July 2000
Fig. 5.39 Effect of oxyanions and chloride ions on the anodic polarization behavior of admiralty brass. Source: Ref 35
More
Image
Published: 01 June 1983
Figure 7.18 Yield and ultimate tensile strengths as a function of temperature for commercially pure, annealed, and cold-drawn copper (polycrystalline); annealed admiralty brass; and aged beryllium copper. Open symbols are yield strengths; closed symbols are ultimate tensile strengths (Handbook
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430087
EISBN: 978-1-62708-253-2
... alloys used for condenser tube applications are admiralty brass, aluminum brass, and cupronickels. Admiralty brass is a cartridge brass (an alloy of 70% Cu and 30% Zn) with 1 to 2% tin added for improved corrosion resistance. Admiralty brass tubes have a small amount of arsenic or antimony, which also...
Abstract
Boilers are often classified based on the maximum operating temperature and pressure for which they are designed. Classifications, in ascending order, are subcritical, supercritical, ultra-supercritical, and to advanced ultra-supercritical. At each higher operating point comes greater efficiency, as well as greater demand on construction materials. This chapter discusses the primary requirements for boiler tube materials, including oxidation and corrosion resistance, fatigue strength, thermal conductivity, and the ability to resist creep and rupture. It also provides information on various steels and alloys, covering cost, engineering specifications, and ease of use.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090221
EISBN: 978-1-62708-266-2
... to the stress intensity ( K ) at the crack tip. Beavers ( Ref 7.56 ) studied the effect of stress intensity on crack growth in annealed admiralty brass in a 15 N tarnishing ammoniacal solution. Testing was performed on single-edge notched tensile specimens under constant load. Results, summarized in Fig...
Abstract
This chapter describes the conditions under which copper-base alloys are susceptible to stress-corrosion cracking (SCC) and some of the environmental factors, such as temperature, pH, and corrosion potential, that influence crack growth and time to failure. It explains that, although most of the literature has been concerned with copper zinc alloys in ammoniacal solutions, there are a number of alloy-environment combinations where SCC has been observed. The chapter discusses several of these cases and the effect of various application parameters, including composition, microstructure, heat treatment, cold working, and stress intensity. It also provides information on stress-corrosion testing, mitigation techniques, and basic cracking mechanisms.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030082
EISBN: 978-1-62708-282-2
... by adding 1% Sn, as in admiralty brass (71Cu-28Zn-1Sn, UNS C44400) and naval brass (60Cu-39Zn-1Sn, UNS C46400), and further inhibited by adding less than 0.1% of arsenic ( Ref 20 ), antimony, or phosphorus. Uniform dealloying in admiralty brass is shown in Fig. 3 . Fig. 3 Uniform-layer...
Abstract
This chapter discusses the effects of metallurgical variables on dealloying corrosion. It begins by describing the processes involved in dealloying of metal alloys in aqueous environments. This is followed by a discussion on the morphology of porous dealloyed structures below and above the critical potential. Some features experimentally observed for dealloying systems are then considered. The chapter concludes by briefly reviewing the proposed mechanisms for the formation of porous metals, namely ionization-redeposition mechanism, surface diffusion mechanism, volume diffusion mechanism, and percolation model of selective dissolution.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170457
EISBN: 978-1-62708-297-6
... and reasonably good cold formability. In rod form, they can be cold-headed to produce high-strength fasteners and similar parts. Leaded alloys C48200 and C48500 are free-machining. Alloy C42500 is supplied as strip for fabricating into electrical connectors, springs, and related products. The admiralty brasses...
Abstract
This article discusses the composition, properties, and behaviors of copper and its alloys. It begins with an overview of the characteristics, applications, and commercial grades of wrought and cast copper. It then discusses the role of alloying, explaining how zinc, tin, aluminum, silicon, and nickel affect the physical and mechanical properties of coppers and high-copper alloys as well as brasses, bronzes, copper-nickels, and nickel silvers. It also explains how alloying affects electrical conductivity, corrosion resistance, stress-corrosion cracking, and processing characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030019
EISBN: 978-1-62708-282-2
... (active) Hastelloy alloy B Chlorimet 2 Copper alloy C27000 (yellow brass, 65% Cu) Copper alloys C44300, C44400, C44500 (admiralty brass) Copper alloys C60800, C61400 (aluminum bronze) Copper alloy C23000 (red brass, 85% Cu) Copper C11000 (ETP copper) Copper alloys C65100, C65500...
Abstract
This chapter provides a brief account of galvanic corrosion, which occurs when a metal or alloy is electrically coupled to another metal or conducting nonmetal in the same electrolyte. It begins by describing the galvanic series of metals and alloys useful for predicting galvanic relationships, followed by a brief section on polarization of metals or alloys. The effects of area, distance, and geometric shapes on galvanic-corrosion behavior are then discussed. Various alloys susceptible to galvanic corrosion are briefly reviewed. The chapter also discusses various modes of attack that lead to galvanic corrosion, along with methods for predicting and controlling galvanic corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300163
EISBN: 978-1-62708-323-2
...-35.5Zn ASTM B16, C36000, free machining Admiralty, 72Cu-1Sn-26Zn C44509 Red brass, 85Cu-15Zn ASTM B97, C23000 Yellow brasses 70Cu-30Zn ASTM B36, C26000 66Cu-34Zn ASTM B134, C27000 60Cu-1Sn-0.04As-38Zn C46500, Naval brass Special brasses 60Cu...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240469
EISBN: 978-1-62708-251-8
... and improves casting fluidity. The best-known cast alloy is admiralty metal, which contains 10 wt% Sn and 2 wt% Zn. While it is no longer used for naval ordnance, it is still widely used where strong, corrosion-resistant castings are required. Up to 2.0 wt% Pb is sometimes added to both bronzes and brasses...
Abstract
Copper is often used in the unalloyed form because pure copper is more conductive than copper alloys. Alloying elements are added to optimize strength, ductility, and thermal stability, with little negative effect on other properties such as conductivity, fabricability, and corrosion resistance. This chapter covers the classification, composition, properties, and applications of copper alloys, including brasses, bronzes, copper-nickel, beryllium-copper, and casting alloys. It also examines wrought copper alloys and pure coppers. The chapter begins with an overview of the copper production process and concludes with a discussion on corrosion resistance.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860237
EISBN: 978-1-62708-348-5
... structures. Elements Alloys F.c.c. Copper Aluminum Nickel Lead Silver Gold Platinum Austenitic stainless steels Brass (< 30 at.% Zn) B.c.c. Iron Molybdenum Tungsten Niobium Vanadium Chromium Lithium Sodium Potassium Ferritic stainless steels a Carbon steel a Nickel steels...
Abstract
The mechanical properties of a material describe the relations between the stresses acting on the material and its resulting deformations. Stresses capable of producing permanent deformations, which remain after the stresses are removed, are considered in this chapter. The effects of cryogenic temperatures on the mechanical properties of metals and alloys are reviewed in this chapter; the effects on polymers and glasses are discussed briefly. The fundamental mechanisms controlling temperature-dependent mechanical behavior, phenomena encountered in low-temperature testing, and the mechanical properties of some representative engineering metals and alloys are described. Modifications of test procedures for low temperatures and sources of data are also included.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940183
EISBN: 978-1-62708-302-7
Abstract
This chapter discusses the complex polarization characteristics of active-passive metals and addresses related problems in interpreting their corrosion behavior. It begins by presenting several experimentally derived polarization curves for iron, comparing and contrasting them with the iron-water Pourbaix diagram. It then explains how anodic polarization is extremely sensitive to the environment and, as a result, a reasonably complete curve for a given metal-environment system usually can only be inferred. It goes on to describe how such curves are constructed, demonstrating the procedures for a wide range of alloys and environments. The examples also show how factors such as alloy concentration, crystal lattice orientation, temperature, and dissolved oxygen affect corrosion behavior.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350011
EISBN: 978-1-62708-315-7
...) Hastelloy alloy B Chlorimet 2 Copper alloy C27000 (yellow brass, 65% Cu) Copper alloys C44300, C44400, C44500 (admiralty brass) Copper alloys C60800, C61400 (aluminum bronze) Copper alloy C23000 (red brass, 85% Cu) Copper C11000 (ETP copper) Copper alloys C65100, C65500 (silicon bronze...
Abstract
This chapter discusses the basic principles of corrosion, explaining how and why it occurs and how it is categorized and dealt with based on the appearance of corrosion damage or the mechanism of attack. It explains where different forms of corrosion are likely to occur and identifies metals likely to be affected. It also discusses the selection and use of protective coatings and the tests that have been developed to measure their effectiveness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630211
EISBN: 978-1-62708-270-9
..., 444, 445 (admiralty brass) Copper alloy 270 (yellow brass, 65%) Chlorimet 2 Hastelloy B Inconel alloy 600 (active) Nickel 200 (active) Copper alloys 464, 465, 466, 467 (naval brass) Copper alloy 675 (manganese bronze A) Copper alloy 280 (Muntz metal, 60%) Tin Lead Type...
Abstract
This chapter outlines the major types of corrosion, their interactions, their complicating effects on fracture and wear, and some possible prevention methods. The types of corrosion considered in the chapter are galvanic corrosion, uniform corrosion, pitting corrosion, crevice corrosion, microbiologically influenced corrosion, stress-corrosion cracking, and corrosion fatigue.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030209
EISBN: 978-1-62708-282-2
... of hydrogen sulfide increases. Copper alloys, such as admiralty brass and Monel, become susceptible to corrosion at values of pH above 7.0, especially in the presence of ammonia or amines. The ideal pH in most systems is determined by monitoring the corrosion rate at various pHs between 5.5 and 7.0...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030215
EISBN: 978-1-62708-282-2
... Nickel cast irons Type 410 stainless steel (active) 50Pb-50Sn solder Type 304 and 316 stainless steels (active) Lead Tin Muntz metal, manganese bronze, naval brass Nickel (active) Alloy 600 (active) Yellow and red brasses, aluminum and silicon bronzes Copper and copper...
Abstract
This chapter outlines the step-by-step processes by which materials are selected in order to prevent or control corrosion and includes information on materials that are resistant to the various forms of corrosion. The various forms of corrosion covered are general (uniform) corrosion, localized corrosion, galvanic corrosion, intergranular corrosion, stress-corrosion cracking, hydrogen damage, and erosion-corrosion. In addition, the economic importance of cost-effective materials selection is also considered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910099
EISBN: 978-1-62708-250-1
... or stainless steels immersed in seawater characteristically corrode with the formation of deep pits ( Fig. 4 and 6 ). Aluminum tends to pit in waters containing chloride ions (for example, at stagnant areas), and aluminum brasses are subject to pitting in polluted waters. Fig. 6 Deep pits on a carbon...
Abstract
Corrosion problems can be divided into eight categories based on the appearance of the corrosion damage or the mechanism of attack: uniform or general corrosion; pitting corrosion; crevice corrosion, including corrosion under tubercles or deposits, filiform corrosion, and poultice corrosion; galvanic corrosion; erosion-corrosion, including cavitation erosion and fretting corrosion; intergranular corrosion, including sensitization and exfoliation; dealloying; environmentally assisted cracking, including stress-corrosion cracking, corrosion fatigue, and hydrogen damage (including hydrogen embrittlement, hydrogen-induced blistering, high-temperature hydrogen attack, and hydride formation). All these forms are addressed in this chapter in the context of aqueous corrosion. For each form, a general description is provided along with information on the causes and the list of metals that can be affected, with particular emphasis on the recognition and prevention measures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610501
EISBN: 978-1-62708-303-4
... alloy 280 (Muntz metal, 60%) Copper alloy 675 (manganese bronze A) Copper alloys 464, 465, 466, 467 (naval brass) Nickel 200 (active) Inconel alloy 600 (active) Hastelloy B Chlorimet 2 Copper alloy 270 (yellow brass, 65%) Copper alloys 443, 444, 445 (admiralty brass) Copper...
Abstract
This chapter discusses common forms of corrosion, including uniform corrosion, galvanic corrosion, pitting, crevice corrosion, dealloying corrosion, intergranular corrosion, and exfoliation. It describes the factors that contribute to stress-corrosion cracking, hydrogen embrittlement, and corrosion fatigue and compares and contrasts their effects on mechanical properties, performance, and operating life. It also includes information on high-temperature oxidation and corrosion prevention techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910301
EISBN: 978-1-62708-250-1
..., cooling tower water became contaminated with a few parts per million of NH 3 when an ammonium-manufacturing plant was built nearby. In another case, the admiralty brass (C44400) heat-exchanger tubing in a large air compressor stress cracked in cold-worked areas after it was installed about 30 m (100 ft...
Abstract
The design process is the first and most important step in corrosion control. Major savings in operating costs are possible by anticipating corrosion problems so as to provide proper design for equipment before assembly or construction begins. This chapter describes the role of the design team in producing a successful final design, general considerations in corrosion-control design, and design details that accelerate corrosion. The details that must be considered when attempting to control corrosion by design include plant/site location, plant environment, component/assembly shape, fluid movement, surface preparation and coating procedures, and compatibility, insulation, and stress considerations. Design solutions for specific forms of corrosion, namely crevice corrosion, galvanic corrosion, erosion-corrosion, and stress-corrosion cracking, are then considered. A brief section is devoted to the discussion on corrosion allowance used for steel parts subject to uniform corrosion. Finally, the chapter describes the design considerations for using weathering steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430027
EISBN: 978-1-62708-253-2
Abstract
This chapter describes the metallurgy, composition, and properties of steels and other alloys. It provides information on the atomic structure of metals, the nature of alloy phases, and the mechanisms involved in phase transformations, including time-temperature effects and the role of diffusion, nucleation, and growth. It also discusses alloying, heat treating, and defect formation and briefly covers condenser tube materials.