Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 47
Phase diagrams
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2024
DOI: 10.31399/asm.tb.pdktmse.t56100001
EISBN: 978-1-62708-470-3
Abstract
Phase diagrams serve as a map to the phases present in an alloy at different temperatures and compositions. They also help in assessing mechanical properties, selecting heat treat temperatures, warning of possible solidification problems, and identifying routes for creating desired microstructures. This chapter familiarizes readers with the information contained in binary phase diagrams and the methods used to extract it. It explains how thermocouple measurements are used to determine liquidus, solidus, and eutectic reaction lines, how differential scanning calorimetry shows where phase reactions occur, and how x-ray diffraction identifies the actual phases present. It demonstrates the use of tie lines for determining phase composition at different temperatures and the application of the level rule to calculate phase fractions. It also discusses the CALPHAD method and presents computed binary phase diagrams that account for the presence of inclusions, oxygen content, and secondary phases.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2024
DOI: 10.31399/asm.tb.pdktmse.t56100019
EISBN: 978-1-62708-470-3
Abstract
This appendix contains sample problems with worked solutions pertaining to the use of binary phase diagrams. The problems require the determination of favorable temperatures and compositions, the amount and composition of phases in an alloy at a given temperature, the amount of a certain phase in different steels, and the microstructure developed in different alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2024
DOI: 10.31399/asm.tb.pdktmse.9781627084703
EISBN: 978-1-62708-470-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320031
EISBN: 978-1-62708-332-4
Abstract
This chapter discusses the crystal structures of steel and cast iron, the iron-iron carbide equilibrium diagram, microconstituents or phases in the iron-iron carbide phase diagram, the iron-carbon carbide-silicon equilibrium diagram of cast irons, and the influence on microstructure by base elements and alloying elements. Graphitization, cooling rates, and heat treatment effects are covered. There also is discussion on inoculation benefits, flake graphite types and typical applications, evolution of cast iron types, ASTM specification A247 for graphite shapes, and selection of the best molding process. A large table lists typical material choices for various applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310001
EISBN: 978-1-62708-326-3
Abstract
The building block of all matter, including metals, is the atom. This chapter initially provides information on atomic bonding and the crystal structure of metals and alloys, followed by a description of three crystal lattice structures of metals: face-centered cubic, hexagonal close-packed, and body-centered cubic. It then describes the four main divisions of crystal defects, namely point defects, line defects, planar defects, and volume defects. The chapter provides information on grain boundaries of metals, processes involved in atomic diffusion, and key properties of a solid solution. It also explains the aspects of a phase diagram that shows what phase or phases are present in the alloy under conditions of thermal equilibrium. Finally, a discussion on the applications of equilibrium phase diagrams is presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250047
EISBN: 978-1-62708-287-7
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190035
EISBN: 978-1-62708-296-9
Abstract
Structurally differentiated intermetallic phases are important constituents in the microstructure of aluminum alloys, with the potential to influence properties, behaviors, and processing characteristics. These phases can form in aluminum-silicon alloys with transition metals (Fe, Mn, Ni, Cr, V, Ti) and with metals such as Mg and Cu. This chapter is a compilation of phase diagrams, microstructure images, and tables, providing information on more than 30 binary, ternary, and quaternary alloy systems associated with intermetallic phases in aluminum-silicon castings. Each section includes tabular information and data on the intermetallic phases in the aluminum corner of the equilibrium phase diagram, the characteristics of the crystal lattice of intermetallic phases, the chemical composition of the alloy intermetallic phases, and equilibrium reactions in the alloy system.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.9781627082969
EISBN: 978-1-62708-296-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410017
EISBN: 978-1-62708-265-5
Abstract
This chapter describes the iron-carbon phase diagram, its modification by alloying elements, and the effect of carbon on the chemistry and crystallography of austenite, ferrite, and cementite found in Fe-C alloys and steels. It also lays the groundwork for understanding important metallurgical concepts, including solubility, critical temperature, dislocation defects, slip, and diffusion, and how they affect the microstructure, properties, and behaviors of steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.9781627083188
EISBN: 978-1-62708-318-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480031
EISBN: 978-1-62708-318-8
Abstract
This chapter describes the structures, phases, and phase transformations observed in metals and alloys as they solidify and cool to lower temperatures. It begins with a review of the solidification process, covering nucleation, grain growth, and the factors that influence grain morphology. It then discusses the concept of solid solutions, the difference between substitutional and interstitial solid solubility, the effect of alloying elements, and the development of intermetallic phases. The chapter also covers the construction and use of binary and ternary phase diagrams and describes the helpful information they contain.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730011
EISBN: 978-1-62708-283-9
Abstract
Phases are distinct states of aggregation of matter and one of the primary leverage points for understanding and applying materials. This chapter discusses the phase nature of metals and alloys, the concept of solid solutions, and the use of phase diagrams. It also describes some of the metallurgical effects of freezing or solidification, including the segregation of solutes and the formation of metal glasses.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.9781627083102
EISBN: 978-1-62708-310-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420001
EISBN: 978-1-62708-310-2
Abstract
This chapter provides a brief overview of phase diagrams, explaining what they represent and how and why they are used. It identifies key points, lines, and features on a binary nickel-copper phase diagram and explains what they mean from a practical perspective. It also discusses the concept of equilibrium, the significance of Gibb’s phase rule, the theorem of Le Chatelier, and the use of the lever rule.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420041
EISBN: 978-1-62708-310-2
Abstract
This chapter explains how the principles of chemical thermodynamics are used in the construction and interpretation of phase diagrams. After a brief review of the laws of thermodynamics, it describes the concept of Gibbs free energy and its application to transformations that occur in single-component and binary solid solutions. It then examines the relationship between the free energy of a solution and the chemical potentials of the individual components. It also explains how to account for the heat of mixing using quasi-chemical models, discusses the effect of interatomic bond energies and chemical potentials, and shows how the equilibrium state of an alloy can be obtained from free-energy curves.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420073
EISBN: 978-1-62708-310-2
Abstract
This chapter discusses the unique characteristics of isomorphous alloy systems. It begins with a review of the naming conventions for multi-component systems and the construction of a three-dimensional phase diagram for a two-component alloy system. It explains how phase diagrams can be constructed from time-temperature cooling curves and how they can be used to predict the phases present, their chemical compositions, and relative amounts. It also shows how phase diagrams can be modified to account for nonequilibrium cooling conditions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420135
EISBN: 978-1-62708-310-2
Abstract
This chapter provides a brief overview of monotectic alloy systems and reactions. It begins by presenting a monotectic phase diagram and identifying important points, lines, and regions. It then describes the monotectic reactions that occur in copper-lead systems and the associated solidification structures. It also discusses the morphology of the microstructure produced during directional solidification and the classification criteria of low- and high-dome alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420191
EISBN: 978-1-62708-310-2
Abstract
This chapter discusses the construction, interpretation, and use of ternary phase diagrams. It begins by examining a hypothetical phase space diagram and several corresponding two-dimensional plots. It then describes one of the most basic tools of metallurgy, the Gibbs triangle, and explains how to construct tie lines to analyze intermediate compositions and phases. It also discusses the use of three-dimensional temperature-composition diagrams, three- and four-phase equilibrium phase diagrams, and binary and ternary phase diagrams associated with the iron-chromium-nickel alloy system.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420239
EISBN: 978-1-62708-310-2
Abstract
This chapter discusses some of the methods and measurements used to construct phase diagrams. It explains how cooling curves were widely used to determine phase boundaries, and how equilibrated alloys examined under controlled heating and cooling provide information for constructing isothermal and vertical sections as well as liquid projections. It also explains how diffusion couples provide a window into local equilibria and identifies typical phase diagram construction errors along with problems stemming from phase-boundary curvatures and congruent transformations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420263
EISBN: 978-1-62708-310-2
Abstract
This chapter provides an overview of a computational method, called CALPHAD, used for the study of phase equilibria in multicomponent systems. It describes the thermodynamic models and calculation techniques employed in the software and explains how it applies to complex alloys used in industry. It also provides examples showing how CALPHAD has been used to determine the formability of metallic glass, calculate the dilation of stainless steel during phase transformation, and predict the beta transus and approach curves of commercial titanium alloys.
1