Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 37
Measuring and testing instruments
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2024
DOI: 10.31399/asm.tb.phtpp.t59380001
EISBN: 978-1-62708-456-7
Abstract
Critical process variables must be controlled to ensure uniform and repeatable heat-treating results. This chapter covers the subject of controlling the heat-treating process. All heat-treating equipment utilizes various sensors, timers, and other components to monitor and control the process utilizing various control methods. The chapter focuses on temperature control and measurement, including a discussion about thermocouples and devices for measuring thermal and electrical conductivity.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 March 2024
DOI: 10.31399/asm.tb.gvar.t59360043
EISBN: 978-1-62708-435-2
Abstract
This chapter focuses on the design of measuring devices. The devices used to measure vibration typically consist of an electronic transducer with an interconnecting cable and an alternating current voltmeter. The working principle of each type of transducer is described in this chapter along with their important characteristics and common applications. The chapter provides general guidelines for the selection of a measuring device, and discusses vibration severity levels.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 March 2024
DOI: 10.31399/asm.tb.gvar.9781627084352
EISBN: 978-1-62708-435-2
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040084
EISBN: 978-1-62708-428-4
Abstract
This article, prepared under the auspices of the ASM Thermal Spray Society Committees on Accepted Practices, describes a procedure for evaluating residual stresses in thermal spray coatings, which is an extension of the well-known layer removal method to include the Young’s modulus and Poisson’s ratio properties of the thermal spray coating material and the substrate. It presents questions and answers that were selected to introduce residual stresses in thermal spray coatings. The article describes equipment and the laboratory procedure for the modified layer removal method and provides the description of the residual stress specimen. It also describes the procedures for applying or installing bonded resistance strain gages, the dimensions of the test specimen, the procedure for removing layers, and the method for interpreting the data to evaluate residual stresses. The spreadsheet program, “ MLRM for Residual Stresses ,” is available as a supplement to this document.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 15 June 2021
DOI: 10.31399/asm.tb.mpktmse.t56010001
EISBN: 978-1-62708-384-3
Abstract
Product design requires an understanding of the mechanical properties of materials, much of which is based on tensile testing. This chapter describes how tensile tests are conducted and how to extract useful information from measurement data. It begins with a review of the different types of test equipment used and how they compare in terms of loading force, displacement rate, accuracy, and allowable sample sizes. It then discusses the various ways tensile measurements are plotted and presents examples of each method. It examines a typical load-displacement curve as well as engineering and true stress-strain curves, calling attention to certain points and features and what they reveal about the test sample and, in some cases, the cause of the behavior observed. It explains, for example, why some materials exhibit discontinuous yielding while others do not, and in such cases, how to determine when yielding begins. It also explains how to determine other properties via tensile tests, including ductility, toughness, and modulus of resilience.
Series: ASM Technical Books
Publisher: ASM International
Published: 15 June 2021
DOI: 10.31399/asm.tb.mpktmse.t56010019
EISBN: 978-1-62708-384-3
Abstract
This appendix provides readers with worked solutions to 25 problems involving calculations associated with tensile testing and the determination of mechanical properties and variables. The problems deal with engineering factors and considerations such as stress and strain, loading force, sample lengthening, and machine stiffness, and with mechanical properties and parameters such as elastic modulus, Young’s modulus, strength coefficient, strain-hardening exponent, and modulus of resilience. They also cover a wide range of materials including various grades of aluminum and steel as well as iron, titanium, brass, and copper alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 15 June 2021
DOI: 10.31399/asm.tb.mpktmse.9781627083843
EISBN: 978-1-62708-384-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110196
EISBN: 978-1-62708-247-1
Abstract
This article reviews the basic physics behind active photon injection for local photocurrent generation in silicon and thermal laser stimulation along with standard scanning optical microscopy failure analysis tools. The discussion includes several models for understanding the local thermal effects on metallic lines, junctions, and complete devices. The article also provides a description and case study examples of multiple photocurrent and thermal injection techniques. The photocurrent examples are based on Optical Beam-Induced Current and Light-Induced Voltage Alteration. The thermal stimulus examples are Optical Beam-Induced Resistance Change/Thermally-Induced Voltage Alteration and Seebeck Effect Imaging. Lastly, the article discusses the application of solid immersion lenses to improve spatial resolution.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110323
EISBN: 978-1-62708-247-1
Abstract
This article presents methods that enable one to consistently, uniformly and quickly remove substrate silicon from units without imparting damage to the structure of interest. It provides examples of electron beam probing and backside nano-probing techniques. The electron beam probing techniques are E-beam Logic State Imaging, Electron-beam Signal Image Mapping, and E-beam Device Perturbation. Backside nano-probing techniques discussed include: Electron Beam Absorbed Current, Electron Beam Induced Resistance Change, four terminal resistance measurements, resistive gate defect identification, and circuit editing. The article also presents methods to prepare electron beam probing samples where some remaining silicon is required for the transistor functions and transmission electron microscope samples from units where the substrate silicon has been partially or completely removed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110413
EISBN: 978-1-62708-247-1
Abstract
This article provides an overview of how to use the scanning electron microscope (SEM) for imaging integrated circuits. The discussion covers the principles of operation and practical techniques of the SEM. The techniques include sample mounting, sample preparation, sputter coating, sample tilt and image composition, focus and astigmatism correction, dynamic focus and image correction, raster alignment, and adjusting brightness and contrast. The article also provides information on achieving ultra-high resolution in the SEM. It concludes with information on the general characteristics and applications of environmental SEM.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110434
EISBN: 978-1-62708-247-1
Abstract
This article provides an overview of the most common micro-analytical technique in the failure analysis laboratory: energy dispersive X-ray spectroscopy (EDS). It discusses the general characteristics, advantages, and disadvantages of some of the X-ray detectors attached to the scanning electron microscope chamber including the lithium-drifted EDS detector, silicon drift detector (SDD), and wavelength dispersive X-ray detector. The article then provides information on qualitative and quantitative X-ray analysis programs followed by a discussion on EDS elemental mapping. The discussion includes a comparison of scanning transmission electron microscope-EDS elemental mapping and mapping with an SDD. A brief section is devoted to the discussion on the artifacts that occur during X-ray mapping.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250047
EISBN: 978-1-62708-287-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720001
EISBN: 978-1-62708-305-8
Abstract
This chapter provides an overview of the various inspection methods used with metals and alloys, namely visual inspection, coordinate measuring machines, machine vision, hardness testing, tensile testing, chemical analysis, metallography, and nondestructive testing. The nondestructive testing methods discussed are liquid penetrant inspection, magnetic particle inspection, eddy current inspection, radiographic inspection, and ultrasonic testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720049
EISBN: 978-1-62708-305-8
Abstract
The coordinate measuring machine (CMM) is used for three-dimensional inspection of both in-process and finished parts. This chapter provides a detailed account of the operating principles, measurement techniques, capabilities, and applications of CMMs. The types of CMMs are described. Vertical CMMs include cantilever-type, bridge-type, and gantry CMMs; horizontal CMMs, such as the horizontal-arm type, are also covered. The CMM application for geometric measurement, contour measurement, and specialized surface measurement are discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720139
EISBN: 978-1-62708-305-8
Abstract
The overall chemical composition of metals and alloys is most commonly determined by x-ray fluorescence (XRF) and optical emission spectroscopy (OES). High-temperature combustion and inert gas fusion methods are typically used to analyze dissolved gases (oxygen, nitrogen, and hydrogen) and, in some cases, carbon and sulfur in metals. This chapter discusses the operating principles of XRF, OES, combustion and inert gas fusion analysis, surface analysis, and scanning auger microprobe analysis. The details of equipment set-up used for chemical composition analysis as well as the capabilities of related techniques of these methods are also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720267
EISBN: 978-1-62708-305-8
Abstract
Ultrasonic inspection is a nondestructive method in which beams of high frequency acoustic energy are introduced into a material to detect surface and subsurface flaws, to measure the thickness of the material, and to measure the distance to a flaw. This chapter begins with an overview of ultrasonic flaw detectors, ultrasonic transducers, and search units and couplants. It then discusses the principles of operation, presentation, and interpretation of data of pulse echo and transmission methods. This is followed by sections providing information on general characteristics of ultrasonic waves and the factors influencing ultrasonic inspection. The advantages, disadvantages, and applications of ultrasonic inspection are finally compared with other methods of nondestructive inspection of metal parts.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.9781627083058
EISBN: 978-1-62708-305-8
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.9781627083171
EISBN: 978-1-62708-317-1
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500301
EISBN: 978-1-62708-317-1
Abstract
This chapter discusses the types of sensors used in sheet forming operations and the information they provide. It explains how force sensors protect equipment from overloads due to tool wear, friction, and misfeeds, how displacement and proximity sensors help to prevent die crashes, how acoustic emission, ultrasonic, and eddy current sensors detect tool breakage and part defects such as cracks, and how roller ball and optical sensors measure material flow. It also discusses the role of draw-in, wrinkle, oil-monitoring, and vision sensors and explains how material properties can be derived in real time from various sensor outputs.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.htpa.9781627083461
EISBN: 978-1-62708-346-1
1