Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-15 of 15
Fiber-reinforced composites
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300301
EISBN: 978-1-62708-323-2
Abstract
This chapter covers the friction and wear behaviors of plastics and elastomers. It begins by describing the molecular differences between the two types of polymers and their typical uses. It then discusses the important attributes of engineering plastics and their suitability for applications involving friction, erosion, and adhesive and abrasive wear. It also discusses the tribology of elastomers and rubber along with their basic differences and the conditions under which they produce Schallamach waves. It includes information on polymer composites as well.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730115
EISBN: 978-1-62708-283-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550457
EISBN: 978-1-62708-307-2
Abstract
Metal-matrix composites can operate at higher temperatures than their base metal counterparts and, unlike polymer-matrix composites, are nonflammable, do not outgas in a vacuum, and resist attack by solvents and fuels. They can also be tailored to provide greater strength and stiffness, among other properties, in preferred directions and locations. This chapter discusses the processes and procedures used in the production of fiber-reinforced aluminum and titanium metal-matrix composites. It explains how the length and orientation of reinforcing fibers affect the properties and processing characteristics of both aluminum and titanium composites. It also provides information on fiber-metal laminates and the use of different matrix metals and reinforcing materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870119
EISBN: 978-1-62708-314-0
Abstract
This chapter familiarizes readers with the many and varied thermoset composite fabrication processes and the types of applications for which they were developed. It describes wet lay-up, prepreg lay-up, and low-temperature vacuum bag curing prepreg processes, which are best suited for low-volume, medium-sized and larger parts. It also discusses filament winding and preforming processes (including weaving, knitting, stitching, and braiding) in addition to resin-transfer molding, resin film infusion, and pultrusion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870285
EISBN: 978-1-62708-314-0
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.9781627083140
EISBN: 978-1-62708-314-0
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030089
EISBN: 978-1-62708-349-2
Abstract
The analysis of composite materials using optical microscopy is a process that can be made easy and efficient with only a few contrast methods and preparation techniques. This chapter is intended to provide information that will help an investigator select the appropriate microscopy technique for the specific analysis objectives with a given composite material. The chapter opens with a discussion of macrophotography and microscope alignment, and then goes on to describe various illumination techniques that are useful for specific analysis requirements. These techniques include bright-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The chapter also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical microscopy.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030115
EISBN: 978-1-62708-349-2
Abstract
Transmitted-light methods reveal more details of the morphology of fiber-reinforced polymeric composites than are observable using any other available microscopy techniques. This chapter describes the various aspects relating to the selection and preparation of ultrathin-section specimens of fiber-reinforced polymeric composites for examination by transmitted-light microscopy techniques. The preparation steps covered are a selection of the rough section, preparation of the rough section for preliminary mounting, grinding and polishing the primary-mount first surface, mounting the first surface on a glass slide, and preparing the second surface (top surface). The optimization of microscope conditions and analysis of specimens by microscopy techniques are also covered. In addition, examples of composite ultrathin sections that are analyzed using transmitted-light microscopy contrast methods are shown throughout.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030193
EISBN: 978-1-62708-349-2
Abstract
As fiber-reinforced polymeric composites continue to be used in more damage-prone environments, it is necessary to understand the response of these materials when subjected to impact from foreign objects. This chapter provides an overview of the analysis methods for impact-damaged composites. It discusses the causes and effects of various failure mechanisms in composite materials. The failure mechanisms covered are brittle-matrix composite failure, tough-matrix composite failure, thermoplastic-matrix composite failure mechanisms, untoughened thermoset-matrix composite failure mechanisms, toughened thermoset-matrix composite failure mechanisms, particle interlayer-toughened composite failure mechanisms, and dispersed-phase, rubber-toughened thermoset-matrix composite failure mechanisms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060223
EISBN: 978-1-62708-343-0
Abstract
Fiber-reinforced metal-matrix composites have carved out a niche in applications requiring high strength to weight ratios, but they are susceptible to failure when exposed to high temperatures and cyclic loads. This chapter discusses the obstacles that must be overcome to improve the creep-fatigue behavior of these otherwise promising materials. It addresses six areas that have been the focus of intense research, including thermal-expansion and elastic-viscoplastic mismatch, thermally induced biaxiality and interply stresses, creep and cyclic relaxation of residual stresses, and enhanced interfaces for oxidation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.9781627083430
EISBN: 978-1-62708-343-0
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240607
EISBN: 978-1-62708-251-8
Abstract
Metal-matrix composites (MMCs) work at higher temperatures than their base metal counterparts and can be engineered for improved strength, stiffness, thermal conductivity, abrasion and/or creep resistance, and dimensional stability. This chapter examines the properties, compositions, and performance-cost tradeoffs of common MMCs, including aluminum-matrix composites, titanium-matrix composites, and fiber-metal laminates. It also explains how fiber-reinforced composites and laminates are made, describing both continuous and discontinuous fiber matrix production processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540319
EISBN: 978-1-62708-309-6
Abstract
This chapter discusses the failure mechanisms associated with fiber-reinforced composites. It begins with a review of fiber-matrix systems and the stress-strain response of unidirectional lamina and both notched and unnotched composite laminate specimens. It then explains how cyclic loading can lead to delamination, the primary failure mode of most composites, and describes some of the methods that have been developed to improve delamination resistance, assess damage tolerance, determine residual strength, and predict failure modes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060183
EISBN: 978-1-62708-355-3
Abstract
This chapter presents the fundamentals of tensile testing of fiber-reinforced polymer composites. Basic tensile testing of polymer composites is divided into lamina and laminate testing. The chapter focuses on tensile testing of laminates. It discusses the most common tensile test methods that have been standardized for fiber-reinforced composite materials. It also briefly reviews considerations in tensile testing of metal-matrix composites.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.9781627083485
EISBN: 978-1-62708-348-5