Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 23
Metal-matrix composites
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.9781627084598
EISBN: 978-1-62708-459-8
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.9781627083195
EISBN: 978-1-62708-319-5
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480113
EISBN: 978-1-62708-318-8
Abstract
This chapter discusses the factors that govern the mechanical properties of titanium, beginning with the morphology of the alpha phase. It explains that the shape of the alpha phase has a significant effect on many properties, including hardness, tensile strength, toughness, and ductility as well as creep, fatigue strength, and fatigue crack growth rate. It also discusses the influence of other titanium phases and the properties of titanium-based intermetallic compounds, metal-matrix composites, and shape-memory alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.9781627083072
EISBN: 978-1-62708-307-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550457
EISBN: 978-1-62708-307-2
Abstract
Metal-matrix composites can operate at higher temperatures than their base metal counterparts and, unlike polymer-matrix composites, are nonflammable, do not outgas in a vacuum, and resist attack by solvents and fuels. They can also be tailored to provide greater strength and stiffness, among other properties, in preferred directions and locations. This chapter discusses the processes and procedures used in the production of fiber-reinforced aluminum and titanium metal-matrix composites. It explains how the length and orientation of reinforcing fibers affect the properties and processing characteristics of both aluminum and titanium composites. It also provides information on fiber-metal laminates and the use of different matrix metals and reinforcing materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870537
EISBN: 978-1-62708-314-0
Abstract
This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000017
EISBN: 978-1-62708-313-3
Abstract
This chapter discusses the metallurgical changes that occur and the improvements that can be achieved in superalloys through solid-solution hardening, precipitation hardening, and dispersion strengthening. It also explains how further improvements can be achieved through the control of grain structure, as in columnar-grained alloys, or by the elimination of grain boundaries as with single-crystal superalloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030067
EISBN: 978-1-62708-349-2
Abstract
The most common methods for preparing polymeric composites for microscopic analysis can be used for most fiber-reinforced composite materials. There are, however, a few composite materials that require special preparation techniques. This chapter discusses the processes involved in the preparation of titanium honeycomb composites, boron fiber composites, titanium/polymeric composite hybrids, and uncured prepreg materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.9781627083140
EISBN: 978-1-62708-314-0
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230163
EISBN: 978-1-62708-298-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.9781627082518
EISBN: 978-1-62708-251-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240607
EISBN: 978-1-62708-251-8
Abstract
Metal-matrix composites (MMCs) work at higher temperatures than their base metal counterparts and can be engineered for improved strength, stiffness, thermal conductivity, abrasion and/or creep resistance, and dimensional stability. This chapter examines the properties, compositions, and performance-cost tradeoffs of common MMCs, including aluminum-matrix composites, titanium-matrix composites, and fiber-metal laminates. It also explains how fiber-reinforced composites and laminates are made, describing both continuous and discontinuous fiber matrix production processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080445
EISBN: 978-1-62708-304-1
Abstract
This appendix is a collection of tables listing the chemical compositions of wrought ferritic steels; wrought stainless steels; cast corrosion- and heat-resistant alloys; wrought iron-, nickel-, and cobalt-base alloys; cast nickel- and cobalt-base alloys; oxide-dispersion-strengthened alloys; and iron-, nickel- and cobalt-base filler metals.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870325
EISBN: 978-1-62708-344-7
Abstract
This chapter discusses the effect of fatigue on polymers, ceramics, composites, and bone. It begins with a general comparison of polymers and metals, noting important differences in microstructure and cyclic loading response. It then presents the results of several studies that shed light on the fatigue behavior and crack growth mechanisms of common structural polymers and moves on from there to discuss the fatigue behavior of bone and how it compares to stable and cyclically softening metals. It also discusses the fatigue characteristics of engineered and composited ceramics and ceramic fiber-reinforced metal-matrix composites.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.9781627083447
EISBN: 978-1-62708-344-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060183
EISBN: 978-1-62708-355-3
Abstract
This chapter presents the fundamentals of tensile testing of fiber-reinforced polymer composites. Basic tensile testing of polymer composites is divided into lamina and laminate testing. The chapter focuses on tensile testing of laminates. It discusses the most common tensile test methods that have been standardized for fiber-reinforced composite materials. It also briefly reviews considerations in tensile testing of metal-matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140069
EISBN: 978-1-62708-335-5
Abstract
This chapter reviews and provides data tables for the wide range of properties and performance characteristics that are possible with specific aluminum casting alloys and tempers. Properties and performance attributes addressed include casting and finishing characteristics; typical physical properties; typical and minimum (design) mechanical properties; fatigue strength; fracture resistance, including subcritical crack growth; and resistance to general corrosion and to stress-corrosion cracking. The chapter concludes with information on the properties of cast aluminum matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120131
EISBN: 978-1-62708-269-3
Abstract
This chapter discusses some of the promising developments in the use of titanium, including titanium aluminides, titanium matrix composites, superplastic forming, spray forming, nanotechnology, and rapid solidification rate processing. It also reports on efforts to increase the operating temperature range of conventional titanium alloys and reduce costs.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.9781627082693
EISBN: 978-1-62708-269-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260187
EISBN: 978-1-62708-336-2
Abstract
This chapter discusses the extrusion characteristics of hard aluminum alloys, particularly those in the 5000 and 7000 series. It begins with a review of two studies, one showing how the extrudability of 7 xxx alloys varies with the presence and amount of different alloying elements, the other relating minimum wall thickness with circumscribing circle diameter. It then explains how oxides on either the billet or container complicate the control of extrusion as well as auxiliary processes and how material flow and the movement of trapped gasses in different regions of the extrusion can lead to defects and variations in strength. It also discusses the extrusion of aluminum matrix composites and explains how composite billets are made.
1