Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-5 of 5
Honeycomb structures
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030067
EISBN: 978-1-62708-349-2
Abstract
The most common methods for preparing polymeric composites for microscopic analysis can be used for most fiber-reinforced composite materials. There are, however, a few composite materials that require special preparation techniques. This chapter discusses the processes involved in the preparation of titanium honeycomb composites, boron fiber composites, titanium/polymeric composite hybrids, and uncured prepreg materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030147
EISBN: 978-1-62708-349-2
Abstract
Achieving the best-performing composite part requires that the processing method and cure cycle create high-quality, low-void-content structures. If voids are present, the performance of the composite will be significantly reduced. There are multiple causes of voids in composite materials; they are generally categorized as voids that are due to volatiles (such as solvents, water) or voids that result from entrapped air. This chapter describes the analysis of various types of voids. It reviews techniques for analysis of voids at ply-drops, voids due to high fiber packing, and voids that occur in honeycomb core composites. The final section of the chapter discusses void documentation through the use of nondestructive inspection techniques and density/specific gravity measurement methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030223
EISBN: 978-1-62708-349-2
Abstract
The honeycomb sandwich structure composite is a very efficient and complex structure widely used in the aircraft industry. Honeycomb-cored sandwich panels increase part stiffness at a lower weight than monolithic composite materials. This chapter describes the analysis of the intermingling of the film adhesive/prepreg resin system. It discusses the causes and effects of honeycomb core movement, which results in core crush. The chapter also explains the formation of a void in honeycomb composites and the failure mechanisms in honeycomb sandwich structure composites.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030001
EISBN: 978-1-62708-349-2
Abstract
This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods, and dispersed-phase toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870255
EISBN: 978-1-62708-314-0
Abstract
This chapter discusses the advantages and disadvantages of sandwich and integral cocured structures, and the methods by which they are made. It begins by explaining where and how sandwich construction is used and why it is so efficient. It then describes the design and fabrication of honeycomb panels and foam cores along with their respective applications and unique attributes. The chapter also discusses the cocuring process and its use in fabricating unitized structures.