Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-18 of 18
Damage tolerance testing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610303
EISBN: 978-1-62708-303-4
Abstract
Fracture control can be defined as a concerted effort to maintain operating safety without catastrophic failure by fracture. It requires an understanding of how cracks affect structural integrity and strength and the time that a crack can grow before it exceeds permissible size. The chapter describes some of methods used to determine maximum permissible crack size and predict growth rates. It explains how the information can then be used to control fractures through periodic inspection, fail-safe features, mandated retirement, and proof testing. It presents a number of fracture control plans optimized for different circumstances, examines the damage tolerance requirements used by different industries, and discusses various approaches for fatigue design.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.9781627083034
EISBN: 978-1-62708-303-4
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870489
EISBN: 978-1-62708-314-0
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060043
EISBN: 978-1-62708-343-0
Abstract
Strain-range partitioning is a method for assessing the effects of creep fatigue based on inelastic strain paths or strain reversals. The first part of the chapter defines four distinct strain paths that can be used to model any cyclic loading pattern and describes the microstructural damages associated with each of the four basic loading cycles. The discussion then turns to fatigue life prediction for different types of materials and more realistic loading conditions, particularly those in which hysteresis loops have more than one strain-range component. To that end, the chapter considers two cases. In one, the relationship between strain range and cyclic life is established from test data. In the other, a rule is required to determine the damage of each concurrent strain and the total damage of the cycle is used to predict creep-fatigue life. The chapter presents several such damage rules and discusses their applicability in different situations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060069
EISBN: 978-1-62708-343-0
Abstract
This chapter demonstrates the versatility of the strain-range partitioning method and its application to creep-fatigue problems involving complex loading histories. It begins with a derivation showing that it is possible to assess the damage of hysteresis loops combining two or more strain ranges using generic loops based on fundamental data. It then explains how to treat problems involving sequential loading with both healing and damage cycles and presents a general solution for combining two loops with arbitrary amounts of the four strain-range components. The chapter also derives closed-form equations that account for interactions among any number of adjacent loops and can be used, through successive application, to analyze any loading history.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060083
EISBN: 978-1-62708-343-0
Abstract
This chapter compares and contrasts empirical approaches for partitioning hysteresis loops and predicting creep-fatigue life. The first part of the chapter presents experimental partitioning methods, explaining how they can be used to partition any loading cycle into its basic strain-range components. The methods covered include rapid cycling between peak stress extremes, half-cycle rapid loading and unloading, and variations of the incremental step-stress approach. The methods are then compared based on their ability to predict creep-fatigue life. The chapter goes on from there to describe how fatigue life can be estimated from ductility measurements when cyclic data are unavailable or are likely to change. It also explains how cyclic life is influenced by the time-dependent nature of creep-plasticity and the physical and metallurgical effects of environmental exposure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060111
EISBN: 978-1-62708-343-0
Abstract
This chapter explains why it is sometimes necessary to separate inelastic from elastic strains and how to do it using one of two methods. It first discusses the direct calculation of strain-range components from experimental data associated with large strains. It then explains how the method can be extended to the treatment of very low inelastic strains by adjusting tensile and compressive hold periods and continuous cycling frequencies. The chapter then begins the presentation of the second approach, called the total strain-range method, so named because it combines elastic and inelastic strain into a total strain range. The discussion covers important features, procedures, and correlations as well as the use of models and the steps involved in predicting thermomechanical fatigue (TMF) life. It also includes information on isothermal fatigue, bithermal creep-fatigue testing, and the predictability of the method for TMF cycling.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.9781627083430
EISBN: 978-1-62708-343-0
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.9781627083447
EISBN: 978-1-62708-344-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870045
EISBN: 978-1-62708-344-7
Abstract
This chapter familiarizes readers with the methods used to quantify the effects of fatigue on component lifetime and failure. It discusses the development and use of S-N (stress amplitude vs. cycles to failure) curves, the emergence of strain-based approaches to fatigue analysis, and important refinements and modifications. It demonstrates the use of approximate equations, including the method of universal slopes and the four-point correlation technique, which provides reasonable estimates of elastic and plastic lines from information obtained in standard tensile tests. It also discusses high-cycle, low-cycle, and ultra-high cycle fatigue and presents several models that are useful for fatigue life predictions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870075
EISBN: 978-1-62708-344-7
Abstract
This chapter discusses the concept of mean stress and explains how it is used in fatigue analysis and design. It begins by examining the stress-strain response of test samples subjected to cyclic forces and strains, noting important features and what they reveal about materials and their fatigue behaviors. It then discusses the challenge of developing hysteresis loops for complex loading patterns and accounting for effects such as ratcheting and stress relaxation. The sections that follow provide a summary of the various ways mean stress is described in the literature and the methods used to calculate or predict its effect on the fatigue life of machine components. The discussion also sheds light on why tensile mean stress is detrimental to both fatigue life and ductility, while compressive mean stress is highly beneficial.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870123
EISBN: 978-1-62708-344-7
Abstract
This chapter addresses the cumulative effects of fatigue and how to determine its impact on component lifetime and performance. It begins by defining a loading history and its corresponding hysteresis loops that exposes the deficiencies of some of the theories discussed. It then proceeds to demonstrate the methods commonly used to analyze cumulative fatigue damage and its effect on component life starting with the classical linear damage rule. After pointing out the inherent limitations of the model, it presents a method that incorporates two linear damage rules, one applying prior to crack initiation and the other after the crack has started. Although the method accounts somewhat better for loading-order effects, the transition in behavior that the rules presume to model occurs prior to any signs of cracking. Two modified versions of the double linear damage rule method, neither of which are related to a physical crack initiation event, are subsequently presented along with several applications showing how the different methods compare. The examples provided include two-level and multilevel tests, a gas-turbine engine compressor disk, and the cumulative damage associated with the irreversible hardening of type 304 stainless steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870157
EISBN: 978-1-62708-344-7
Abstract
This chapter deals with the effects of fatigue in rotating shafts subjected to elastic and plastic strains associated with bending stresses. It begins with a review of the basic approach to treating low-cycle fatigue in bending, explaining that the assumption that stress is proportional to strain is incorrect due to plastic flow, causing considerable discrepancy between measured and calculated stresses. Data plots of the axial and bending fatigue characteristics of a 4130 steel help illustrate the problem. A closed-form solution is then presented and used to analyze the effects of flexural bending on solid as well as hollow rectangular and round bars. The chapter also discusses the difference in the treatment of a rotating shaft in which all surface elements undergo the same stress and strain and a nonrotating shaft in which a few surface elements carry most of the load. The difference, as explained, is due to the volumetric effect of stress in fatigue.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.9781627083454
EISBN: 978-1-62708-345-4
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250293
EISBN: 978-1-62708-345-4
Abstract
This chapter summarizes the various kinds of gear wear and failure and how gear life in service is estimated and discusses the kinds of flaws in material that may lead to premature gear fatigue failure. The topics covered are alignment, gear tooth, surface durability and breakage of gear tooth, life determined by contact stress and bending stress, analysis of gear tooth failure by breakage after pitting, and metallurgical flaws that reduce the life of gears. The chapter briefly reviews some components in the design and structure of each gear and/or gear train that must be considered in conjunction with the teeth to enhance fatigue life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250311
EISBN: 978-1-62708-345-4
Abstract
Mechanical tests are performed to evaluate the durability of gears under load. The chapter first discusses the processes involved in the computations of stress for test parameters of gear. Next, the chapter reviews the four areas of specimen characterization of a test program, namely dimensional, surface finish texture, metallurgical, and residual stress. The following section presents the tests that simulate gear action, namely the rolling contact fatigue test, the single-tooth fatigue test, the single-tooth single-overload test, and the single-tooth impact test. Finally, the chapter describes the test procedures for surface durability (pitting), root strength (bending), and scoring (or scuffing) testing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.9781627083478
EISBN: 978-1-62708-347-8
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.9781627083409
EISBN: 978-1-62708-340-9