Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-7 of 7
Gibbs free energy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Thermodynamics and Phase Diagrams
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420041
EISBN: 978-1-62708-310-2
Abstract
This chapter explains how the principles of chemical thermodynamics are used in the construction and interpretation of phase diagrams. After a brief review of the laws of thermodynamics, it describes the concept of Gibbs free energy and its application to transformations that occur in single-component and binary solid solutions. It then examines the relationship between the free energy of a solution and the chemical potentials of the individual components. It also explains how to account for the heat of mixing using quasi-chemical models, discusses the effect of interatomic bond energies and chemical potentials, and shows how the equilibrium state of an alloy can be obtained from free-energy curves.
Book Chapter
Gas-Metal Systems
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420231
EISBN: 978-1-62708-310-2
Abstract
Gas-metal reactions can have a significant impact on metals and alloys, affecting their properties (during processing) and accelerating service failures, particularly in hot, corrosive environments. This chapter discusses the kinetics of gas-metal reactions and how they are driven by Gibbs energy changes. It plots the energy of formation for many important metal oxides and explains how to construct isothermal stability diagrams to analyze complex reactions involving metals, alloys, and gases containing more than one reactive component.
Book Chapter
Computer Simulation of Phase Diagrams
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420263
EISBN: 978-1-62708-310-2
Abstract
This chapter provides an overview of a computational method, called CALPHAD, used for the study of phase equilibria in multicomponent systems. It describes the thermodynamic models and calculation techniques employed in the software and explains how it applies to complex alloys used in industry. It also provides examples showing how CALPHAD has been used to determine the formability of metallic glass, calculate the dilation of stainless steel during phase transformation, and predict the beta transus and approach curves of commercial titanium alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.9781627083515
EISBN: 978-1-62708-351-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2004
DOI: 10.31399/asm.tb.ps.9781627083522
EISBN: 978-1-62708-352-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940023
EISBN: 978-1-62708-302-7
Abstract
This chapter provides a thorough introduction to the electrochemical thermodynamics that govern electrode reactions associated with corrosion. It begins with a review of the thermodynamic criteria for the stability of chemical reactions based on Gibbs free energy and explains how energies of formation are determined using the oxidation of iron as an example. It then considers how iron reacts with hydrochloric acid, explaining how it can be expressed as two half reactions modeled as electrodes in an electrochemical cell. It goes on to describe the chemical reactions occurring at each electrode, accounting for different variables, mechanisms, and electrochemical effects. The chapter concludes with an in-depth review of Pourbaix diagrams, explaining what they reveal about the stability of metal-water systems and the formation of corrosion products.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.9781627083027
EISBN: 978-1-62708-302-7