Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-5 of 5
X-ray radiography
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2023
DOI: 10.31399/asm.tb.edfatr.t56090021
EISBN: 978-1-62708-462-8
Abstract
Recent trends in electronic packaging, including the growing use of 3D designs and heterogeneous integration, are greatly adding to the complexity of isolating faults in semiconductor products. This chapter reviews the latest IC packaging and integration solutions and assesses the readiness level of fault isolation tools and techniques. It examines the capabilities, limitations, and optimization potential of x-ray tomography and magnetic field imaging, describes various approaches for optical fault isolation, and compares and contrasts pre-OFI sample preparation methods. The chapter also explains how time-domain and electro-optical terahertz pulse reflectometry are used to find shorts and opens in ICs and how challenges related to heterogenous integration may be met through design for testability (DFT) and built-in self-test (BIST) accommodations and the use of passive interposers.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2023
DOI: 10.31399/asm.tb.edfatr.t56090091
EISBN: 978-1-62708-462-8
Abstract
An architectural shift to buried power rails (BPRs) with backside power delivery (BPD) is on the horizon as CMOS technology approaches the 2 nm node. The obstruction created by the presence of BPD networks obsoletes many of the electrical fault isolation (EFI) techniques that have been used for the past few decades and severely degrades the performance of others. This chapter provides an overview of EFI methods that are still applicable to ICs with BPD networks, including e-beam and atomic force probing, x-ray and magnetic field imaging, and lock-in thermography. It assesses the technical challenges of each method as well as the potential for improvement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2023
DOI: 10.31399/asm.tb.edfatr.t56090131
EISBN: 978-1-62708-462-8
Abstract
This chapter assesses the potential impact of neural networks on package-level failure analysis, the challenges presented by next-generation semiconductor packages, and the measures that can be taken to maximize FA equipment uptime and throughput. It presents examples showing how neural networks have been trained to detect and classify PCB defects, improve signal-to-noise ratios in SEM images, recognize wafer failure patterns, and predict failure modes. It explains how new packaging strategies, particularly stacking and disintegration, complicate fault isolation and evaluates the ability of various imaging methods to locate defects in die stacks. It also presents best practices for sample preparation, inspection, and navigation and offers suggestions for improving the reliability and service life of tools.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110603
EISBN: 978-1-62708-247-1
Abstract
Most of the counterfeit parts detected in the electronics industry are either novel or surplus parts or salvaged scrap parts. This article begins by discussing the type of parts used to create counterfeits. It discusses the three most commonly used methods used by counterfeiters to create counterfeits. These include relabeling, refurbishing, and repackaging. The article presents a systematic inspection methodology that can be applied for detecting signs of possible part modifications. The methodology consists of external visual inspection, marking permanency tests, and X-ray inspection followed by material evaluation and characterization. These processes are typically followed by evaluation of the packages to identify defects, degradations, and failure mechanisms that are caused by the processes (e.g., cleaning, solder dipping of leads, reballing) used in creating counterfeit parts.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720233
EISBN: 978-1-62708-305-8
Abstract
This chapter discusses radiography methods using x-rays, gamma rays, and neutrons. It begins with a discussion on the applications and principles of radiography followed by sections providing information on the sources of radiation, classifications, and characteristics of x-ray tubes. Three primary attenuation processes of electromagnetic radiation, namely photoelectric effect, Compton scattering, and pair production, are covered. The chapter then discusses the principles of shadow formation, the process involved in the conversion of radiation into a form suitable for observation, and the characteristics of x-ray film. It provides information on various exposure factors in film radiography. The chapter provides a description of the characteristics that differentiate neutron radiography from x-ray or gamma ray radiography. The application of neutron radiography is described in terms of its advantages for improved contrast on low atomic number materials, discrimination between isotopes, or inspection of radioactive specimens.