Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-10 of 10
Heat capacity
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050009
EISBN: 978-1-62708-311-9
Abstract
This chapter discusses the basic principles of induction heating and related engineering considerations. It describes the design and operation of induction coils, the magnitude and distribution of magnetic fields, and the forces that generate eddy currents in metals. It explains how induced electrical current causes metal to heat in proportion to their electrical resistance and how it affects temperature dependent properties such as resistivity and specific heat and, in turn, heating rates and efficiencies. It also discusses the effect of hysteresis and explains why eddy currents tend to be confined to the outer surface of the workpiece, a phenomenon known as the skin effect. The chapter includes several data plots showing how the depth of heating varies with frequency and how heating time, power density, and thermal conduction rate correspond with hardening depth.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230027
EISBN: 978-1-62708-298-3
Abstract
This chapter provides a thorough review of the crystal structure of beryllium and its elastic, thermal, and nuclear properties. It also includes information on electrical and optical properties and an extensive amount of data in the form of tables and plots.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310279
EISBN: 978-1-62708-286-0
Abstract
This appendix contains tables listing the physical and mechanical properties of stainless steel engineering alloys. The physical properties covered are density, modulus of elasticity, coefficient of thermal expansion, thermal conductivity, specific heat, and electrical resistivity. The mechanical properties listed include yield strength, tensile strength, elongation and hardness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130541
EISBN: 978-1-62708-284-6
Abstract
This appendix is a collection of tables listing coefficients of linear thermal expansion for carbon and low-alloy steels, presenting a summary of thermal expansion, thermal conductivity, and heat capacity; and listing thermal conductivities and specific heats of carbon and low-alloy steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000131
EISBN: 978-1-62708-312-6
Abstract
This chapter discusses the advantages of using powder metallurgy to produce magnetic materials, particularly its ability to control chemistry and near-net shape. It also explains how process parameters and powder characteristics influence the physical and magnetic properties of common stainless steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780115
EISBN: 978-1-62708-281-5
Abstract
This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition, chain configuration, and/or conformation of the base polymers. The thermal analysis techniques covered are differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and rheological analysis. The basic thermal properties covered include thermal conductivity, temperature resistance, thermal expansion, specific heat, and the determination of glass-transition temperatures. The article further describes various factors influencing the determination of service temperature of a material. Representative examples of different types of engineering thermoplastics are discussed in terms of structure and thermal properties. The article also discusses the thermal and related properties of thermoset resin systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200404
EISBN: 978-1-62708-354-6
Abstract
This chapter describes the physical properties of steels used for castings. The properties covered include density, modulus of elasticity, Poisson's ratio, shear modulus, thermal expansion, thermal conductivity, specific heat, thermal diffusivity, electrical resistivity, and magnetic properties.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860047
EISBN: 978-1-62708-348-5
Abstract
Specific heat is a fundamental property that relates the total heat per unit mass added to a system to the resultant temperature change of the system. This chapter begins with the definition and historical development of specific heat. Thermodynamic and solid state relationships are presented which include discussions about lattice specific heat and the effects of magnetic and superconducting transitions. Data sources for practical applications and methods of estimating specific heat for materials are also included. The chapter concludes with a section concerning the measurement of specific heat at low temperatures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860133
EISBN: 978-1-62708-348-5
Abstract
This chapter presents basic principles and the theoretical results of heat transport in solids. Thermal conductivity and thermal diffusivity are the principal properties discussed. Discussions are also included on the effects of temperature, magnetic field, and metallurgical variations caused by composition, processing, and heat-treatment differences. Numerous graphs illustrate the qualitative and quantitative effects of these variables. Measurement methods and associated accuracies and pertinent empirical correlations are presented.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.9781627083485
EISBN: 978-1-62708-348-5