Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-10 of 10
Porosity
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Book: Introduction to Thin Film Deposition Techniques: Key Topics in Materials Science and Engineering
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.t56060001
EISBN: 978-1-62708-440-6
Abstract
This chapter presents the theory and practice associated with the application of thin films. The first half of the chapter describes physical deposition processes in which functional coatings are deposited on component surfaces using mechanical, electromechanical, or thermodynamic techniques. Physical vapor deposition (PVD) techniques include sputtering, e-beam evaporation, arc-PVD, and ion plating and are best suited for elements and compounds with moderate melting points or when a high-purity film is required. The remainder of the chapter covers chemical vapor deposition (CVD) processes, including atomic layer deposition, plasma-enhanced and plasma-assisted CVD, and various forms of vapor-phase epitaxy, which are commonly used for compound films or when deposit purity is less critical. A brief application overview is also presented.
Book: Introduction to Thin Film Deposition Techniques: Key Topics in Materials Science and Engineering
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.t56060013
EISBN: 978-1-62708-440-6
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.9781627084406
EISBN: 978-1-62708-440-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420429
EISBN: 978-1-62708-310-2
Abstract
The solidification process has a major influence on the microstructure and mechanical properties of metal casting as well as wrought products. This appendix covers the fundamentals of solidification. It discusses the formation of solidification structures, the characteristics of planar, cellular, and dendritic growth, the basic freezing sequence for an alloy casting, and the variations in cooling rate, heat flow, and grain morphology in different areas of the mold. It also describes the types of segregation that occur during freezing, the effect of solidification rate on secondary dendrite arm spacing, and the factors that contribute to porosity and shrinkage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870373
EISBN: 978-1-62708-314-0
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240095
EISBN: 978-1-62708-251-8
Abstract
Almost all metals and alloys are produced from liquids by solidification. For both castings and wrought products, the solidification process has a major influence on both the microstructure and mechanical properties of the final product. This chapter discusses the three zones that a metal cast into a mold can have: a chill zone, a zone containing columnar grains, and a center-equiaxed grain zone. Since the way in which alloys partition on freezing, it follows that all castings are segregated to different categories. The different types of segregation discussed include normal, gravity, micro, and inverse. The chapter also provides information on grain refinement and secondary dendrite arm spacing and porosity and shrinkage in castings. It concludes with a brief overview of six of the most important casting processes in industries: sand casting, plaster mold casting, evaporative pattern casting, investment casting, permanent mold casting, and die casting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140165
EISBN: 978-1-62708-264-8
Abstract
Engineering metals undergo many transformations in the course of production, none more critical than those that occur during solidification. This chapter discusses the process of solidification and its effects on the structure and properties of cast metals. It describes the relationship between cooling rate, grain size, grain shape, and phase structures. It explains how the transition from liquid to solid state creates the conditions under which microsegregation occurs, and how it impacts the distribution of alloying elements, carbides, and inclusions. The link between solidification and porosity is also discussed along with its detrimental effect on the mechanical properties of metal castings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000203
EISBN: 978-1-62708-312-6
Abstract
This atlas contains images showing how sintering conditions (time, temperature, and atmosphere) and compaction pressure affect the microstructure of different types of stainless steel. It also includes images of stainless steel powders, fracture surfaces, and test specimens characterized by the presence of compounds, such as oxides, carbides, and nitrides, and various forms of corrosion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140047
EISBN: 978-1-62708-335-5
Abstract
Porosity in aluminum is caused by the precipitation of hydrogen from liquid solution or by shrinkage during solidification, and more usually by a combination of these effects. Nonmetallic inclusions entrained before solidification influence porosity formation and mechanical properties. This chapter describes the causes and control of porosity and inclusions in aluminum castings as well as the combined effects of hydrogen, shrinkage, and inclusions on the properties of aluminum alloys. In addition, it discusses the applications of radiography to reveal internal discontinuities in aluminum.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930329
EISBN: 978-1-62708-359-1
Abstract
Nickel-base alloys are generally used in harsh environments that demand either corrosion resistance or high-temperature strength. This article first describes the general welding characteristics of nickel-base alloys. It then describes the weldability of solid-solution nickel-base alloys in terms of grain boundary precipitation, grain growth, and hot cracking in the heat-affected zone; fusion zone segregation and porosity; and postweld heat treatments. Next, the article analyzes the welding characteristics of dissimilar and clad materials. This is followed by sections summarizing the various types and general weldability of age-hardened nickel-base alloys. The article then discusses the composition, welding metallurgy, and properties of cast nickel-base superalloys. Finally, it provides information on the welding of dissimilar metals, filler metal selection for welding clad materials and for overlay cladding, service conditions during repair, and welding procedural idiosyncrasies of cobalt-base alloys.