Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-9 of 9
Diffusion properties
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 August 2023
DOI: 10.31399/asm.tb.mdsbktmse.t56070007
EISBN: 978-1-62708-451-2
Abstract
The appendix contains detailed simulation examples through which readers learn how to format and analyze problems using the LAMMPS molecular dynamics simulator. By means of simulation, readers will determine the thermal expansion coefficient of copper, generate stress-strain plots for aluminum at different temperatures, calculate the surface energy of copper for different crystal orientations, investigate diffusion effects in BCC iron, estimate the sliding friction between graphene layers, compare the stacking fault energy of silver and aluminum, and analyze the properties and behaviors of liquids and gases. All examples employ a systematic problem-solving approach and include necessary input code.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.t56050001
EISBN: 978-1-62708-432-1
Abstract
A working knowledge of diffusion is necessary to understand and predict the behavior of metals and alloys during manufacturing and in certain types of service. This chapter covers the fundamentals of diffusion in solids and some of the applications in which diffusion plays a role. It discusses the mechanisms behind interstitial, substitutional, grain boundary, and surface diffusion, the derivation and use of Fick’s laws, and the basic principles of diffusion coating processes, including carburizing, nitriding, nitrocarburizing, cyaniding, carbonitriding, boriding, aluminizing, siliconizing, chromizing, vanadizing, and titanizing. It also discusses diffusion bonding and presents several approaches for dealing with oxide barrier problems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.t56050031
EISBN: 978-1-62708-432-1
Abstract
This chapter familiarizes readers with the use of Fick’s laws of diffusion in heat treating, coating, and other metallurgical processes. It contains worked solutions to nearly 30 problems requiring the calculation of activation energy, diffusion coefficient, concentration level, surface layer thickness, case depth, and processing time and temperature. The selected problems deal with various types of iron, steel, and nonferrous alloys and processes ranging from aluminizing, chromizing, carburizing, and plasma nitriding to hydrogen dissipation, decarburizing, and oxidation. A few diffusion problems involving single-crystal silicon are also included.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.9781627084321
EISBN: 978-1-62708-432-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310029
EISBN: 978-1-62708-326-3
Abstract
The existence of austenite and ferrite, along with carbon alloying, is fundamental in the heat treatment of steel. In view of the importance of structure and its formation to heat treatment, this chapter describes the various microstructures that form in steels, the various factors that determine the formation of microstructures during heat treatment processing of steel, and some of the characteristic properties of each of the microstructures. The discussion also covers the constitution of iron during heat treatment and the phases of heat-treated steel with elaborated information on iron phase transformation, hysteresis in heating and cooling, ferrite and austenite as two crystal structures of solid iron, and the diffusion coefficient of carbon.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.t52320167
EISBN: 978-1-62708-357-7
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.9781627083577
EISBN: 978-1-62708-357-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240063
EISBN: 978-1-62708-251-8
Abstract
Diffusion is the movement of atoms through the crystalline lattice. This chapter discusses the two main types of diffusion that can occur in solids: interstitial diffusion and substitutional diffusion. It describes Fick's first and second laws of diffusion, with emphasis on several applications of the latter. The chapter also provides information on the temperature dependence of diffusion, intrinsic diffusion coefficients (Kirkendall effect), and high diffusion paths.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140063
EISBN: 978-1-62708-264-8
Abstract
Diffusion is the primary mechanism by which carbon atoms move or migrate in iron. It is driven by concentration gradients and aided by heat. This chapter provides a practical understanding of the diffusion process and its role in the production and treatment of steel. It discusses the factors that determine diffusion rates and distances, including time, temperature, and the relative size of the atoms involved. It also describes two heat treating methods, carburizing and decarburizing, where carbon diffusion plays a central role.