Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 24
Density
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020013
EISBN: 978-1-62708-389-8
Abstract
This chapter provides readers with worked solutions to more than 25 problems related to compositional impurities and structural defects. The problems deal with important issues and challenges such as the design of low-density steels, the causes and effects of distortion in different crystal structures, the ability to predict the movement of dislocations, the influence of impurities on defects, the relationship between gain size and material properties, the identification of specific types of defects, the selection of compatible metals for vacuum environments, and the effect of twinning planes on stacking sequences. The chapter also includes problems on how the formation of precipitates can produce slip planes and how grain boundaries can act as obstacles to dislocation motion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290001
EISBN: 978-1-62708-319-5
Abstract
This chapter provides an introduction to powder processing of binders and polymers. It sets the context for the remainder of the book by providing an overview of the topics discussed in the subsequent chapters and by providing introduction to powder-binder fabrication and customization of feedstock and describing the challenges in component production. The chapter also summarizes alphabetically a few key concepts in powder-binder processing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290009
EISBN: 978-1-62708-319-5
Abstract
This chapter introduces the key powder fabrication attributes to assist in the identification of the right powders for an application. First, it describes the characteristics of engineering powders such as particle size distribution, powder shape and packing density, surface area, powder flow and rheology, and chemical analysis. The chapter then describes the general categories of powder fabrication methods, namely mechanical comminution, electrochemical precipitation, thermochemical reaction, and phase change and atomization. It provides information on the two largest contributors to powder price, namely raw material cost and conversion cost. The applicability of various processes to specific material systems is mentioned throughout this chapter.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290035
EISBN: 978-1-62708-319-5
Abstract
Generally, binders consist of at least three ingredients: a backbone to provide strength (compounds such as polyethylene, polypropylene, ethylene vinyl acetate, and polystyrene); a filler, such as polyacetal and paraffin wax, to occupy space between particles; and additives, such as stearates, stearic acid, or magnesium stearate, as well as phosphates and sulfonates, to adjust viscosity, lubricate tooling, disperse particles, or induce binder wetting of the powder. In the case of binders deposited via ink jet printing, the binder contains solvents to lower the viscosity for easier jetting. The chapter provides a detailed description of these constituents. The requirements of a binder as well as the factors determining the physical and thermal properties of polymers are discussed. Then, two factors associated with solvation of polymers, namely solubility parameter and wetting, are covered. The chapter ends with information on the specification of polymers used in binders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290067
EISBN: 978-1-62708-319-5
Abstract
This chapter provides details on several specific binder formulations and a discussion of basic binder design concepts. The focus is on customization of the feedstock response to heating, pressurization, or solvent exposure for a specific shaping process. The discussion starts with the requirements of a binder system, the historical progression of binder formulations, and the use of binder alternatives to adapt to specific applications. The importance of binder handling strength to shape preservation is emphasized. The chapter provides information on the binders used for room-temperature shaping, namely slurry and tape casting systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290085
EISBN: 978-1-62708-319-5
Abstract
This chapter is a detailed account of various attributes related to mixing and testing of powder-binder feedstocks. Mixing parameters and their effects on feedstock properties is discussed. The attributes reviewed include mixture homogeneity, wetting, powder-binder ratio, feedstock density, elastic modulus, rheological behavior, particle size, formulation control, feedstock mixing, and feedstock properties. The chapter also provides information on the processes involved in feedstock preparation and testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290111
EISBN: 978-1-62708-319-5
Abstract
The conversion of feedstock into a shape involves the application of heat and pressure, and possibly solvents. This chapter discusses the operating principle, advantages, limitations, and applications of such shaping processes, namely additive manufacturing, cold isostatic pressing, die compaction, extrusion, injection molding, slip casting, slurry processes, and tape casting. Information on equipment setup, requirements, and the various factors influencing these processes are described. In addition, the chapter provides information on novel approaches and processing costs applicable to these shaping processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290139
EISBN: 978-1-62708-319-5
Abstract
Binder removal approaches involve various combinations of heat, solvents, vacuum, and pressure. In each variant, the goal is binder removal without component damage. This chapter addresses the factors that control success, showing how process decisions depend on the powder and binder characteristics. The chapter starts with a comparison of binder-, lubricant-, and polymer-removal situations that arise after powder shaping and then describes the general principles of binder removal in powder-binder techniques. The subsequent sections discuss in detail characteristics, operating procedure, equipment setup, advantages, limitations, and applications of first- and second-stage binder removal processes, as well as the factors influencing these processes. Cost issues associated with binder-removal technologies are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290169
EISBN: 978-1-62708-319-5
Abstract
After shaping and first-stage binder removal, the component (with remaining backbone binder) is heated to the sintering temperature. Further heating induces densification, evident as dimensional shrinkage, pore rounding, and improved strength. This chapter begins with a discussion on the events that are contributing to sintering densification, followed by a discussion on the driving forces, such as surface energy, and high-temperature atomic motion as well as the factors affecting these processes. The process of microstructure evolution in sintering is then described, followed by a discussion on the tools used for measuring bulk properties to monitor sintering and density. The effects of key parameters, such as particle size, oxygen content, sintering atmosphere, and peak temperature, on the sintered properties are discussed. Further, the chapter covers sintering cycles and sintering practices adopted as well as provides information on dimensional control and related concerns of sintering. Cost issues associated with sintering are finally covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290193
EISBN: 978-1-62708-319-5
Abstract
When a material is sintered and evaluated for performance, the primary focus is on mechanical properties. This chapter discusses structural properties for representative materials. Some guidelines are presented on the types of tests and how property values depend on the testing procedure. Mechanical hardness and strength tabulations are provided to document sintered properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290201
EISBN: 978-1-62708-319-5
Abstract
This chapter provides details on powder-binder processing for three materials, namely precipitation-hardened 17-4 PH stainless steel, cemented carbides, and alumina. The types of powders, binders, feedstock, shaping processes, debinding, sintering cycles, compositions, microstructure, distortion, postsintering treatments, and mechanical properties are presented for each. The shaping options include powder-binder approaches such as binder jetting, injection molding, extrusion, slip and slurry casting, centrifugal casting, tape casting, and additive manufacturing. Sintering options are outlined with respect to attaining high final properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290251
EISBN: 978-1-62708-319-5
Abstract
This chapter is intended to identify materials, processes, and designs that will lead to great advances in powder-binder forming technologies. It discusses some of the structures obtained through these advances in powder-binder technologies such as binder jetting and extrusion-based additive manufacturing, including bound-metal deposition and fused-filament fabrication: oxidation-resistant high-temperature alloys, anisotropic structures, submicrometer-scale structures, surface hard materials, and artist metallic clays. Some of the advances discussed include the developments in process involving plastics, emulsions, ceramics, and porous structures and foams. Improvements in the design processes have led to the development of functional structures, controlled porosity, and bioinspired structures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290261
EISBN: 978-1-62708-319-5
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.9781627083195
EISBN: 978-1-62708-319-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430107
EISBN: 978-1-62708-253-2
Abstract
This chapter describes some of the most effective tools for investigating boiler tube failures, including scanning electron microscopy, optical emission spectroscopy, atomic absorption spectroscopy, x-ray fluorescence spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. It explains how the tools work and what they reveal. It also covers the topic of image analysis and its application in the measurement of grain size, phase/volume fraction, delta ferrite and retained austenite, inclusion rating, depth of carburization/decarburization, scale thickness, pearlite banding, microhardness, and hardness profiles. The chapter concludes with a brief discussion on the effect of scaling and deposition and how to measure it.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730159
EISBN: 978-1-62708-283-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730161
EISBN: 978-1-62708-283-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720393
EISBN: 978-1-62708-305-8
Abstract
Fabricated powder metallurgy (P/M) parts are evaluated and tested at several stages during manufacturing for part acceptance and process control. The various types of tests included are dimensional evaluation, density measurements, hardness testing, mechanical testing, and nondestructive testing. This chapter is a detailed account of these testing methods. It describes the four most common types of defects in P/M parts, namely ejection cracks, density variations, microlaminations, and poor sintering. The chapter discusses the capabilities and limitations of various nondestructive evaluation methods to flaw detection in P/M parts. The nondestructive evaluation methods covered are mechanical proof testing, metallography, liquid penetrant crack detection, filtered particle crack detection, magnetic particle crack inspection, direct current resistivity testing, x-ray radiography, computed tomography, gamma-ray density determination, and ultrasonic techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550001
EISBN: 978-1-62708-307-2
Abstract
Engineers have many materials to choose from when dealing with weight-related design constraints. The list includes aluminum, beryllium, magnesium, and titanium alloys as well as engineering plastics, structural ceramics, and polymer-, metal-, and ceramic-matrix composites. This chapter provides a brief overview of these lightweight materials, discussing their primary advantages along with their properties, behaviors, and limitations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000131
EISBN: 978-1-62708-313-3