Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Elongation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310279
EISBN: 978-1-62708-286-0
Abstract
This appendix contains tables listing the physical and mechanical properties of stainless steel engineering alloys. The physical properties covered are density, modulus of elasticity, coefficient of thermal expansion, thermal conductivity, specific heat, and electrical resistivity. The mechanical properties listed include yield strength, tensile strength, elongation and hardness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060013
EISBN: 978-1-62708-355-3
Abstract
This chapter focuses on mechanical behavior under conditions of uniaxial tension during tensile testing. It begins with a discussion of properties determined from the stress-strain curve of a metal, namely, tensile strength, yield strength, measures of ductility, modulus of elasticity, and resilience. This is followed by a section describing the parameters determined from the true stress-true strain curve. The chapter then presents the mathematical expressions for the flow curve. The chapter reviews the effect of strain rate and temperature on the stress-strain curve and describes the instability in tensile deformation and stress distribution at the neck in the tensile specimen. It discusses the processes involved in ductility measurement and notch tensile test in tensile specimens. The parameter that is commonly used to characterize the anisotropy of sheet metal is covered. Finally, the chapter covers the characterization of fractures in tensile test specimens.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060033
EISBN: 978-1-62708-355-3
Abstract
This chapter discusses the methodology of the tensile test and the effect of some of the variables on the tensile properties. The methodology and variables discussed are shape of the item being tested, method of gripping the item, method of applying the force, determination of strength properties other than the maximum force required to fracture the test item, ductility properties to be determined, speed of force application or speed of elongation, and test temperature. The chapter presents the definitions of the basic terms and their units, along with discussions of basic stress-strain behavior and the differences between related terms, such as stress and force and strain and elongation. It considers the parts of a tensile test, namely, test-piece preparation, geometry, and material condition; test setup and equipment; and test procedures. The chapter provides information on post-test measurements and describes the effect of strain concentrations and strain rate on tensile properties.