Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 32
Plastic flow
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400203
EISBN: 978-1-62708-316-4
Abstract
This chapter describes the various types of cushion systems used in forming presses and their effect on part quality. It begins with a review of the deep drawing process, explaining that wrinkling, tearing, and fracture are the result of excess or insufficient material flow, which can be prevented by maintaining the correct amount of holding force on the periphery of the blank. It then describes how blank holding force is generated in double-action presses and the extent to which displacement profiles can be adjusted on both the inner and outer slides. The discussion then turns to single-action presses that incorporate some type of cushion system. The chapters describes the many ways that cushion systems are implemented in forming presses and the force and displacement characteristics achievable with each method. It also explains how multipoint cushion systems are designed and how they facilitate uniform metal flow into the die cavity of large deep-drawn parts.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060111
EISBN: 978-1-62708-343-0
Abstract
This chapter explains why it is sometimes necessary to separate inelastic from elastic strains and how to do it using one of two methods. It first discusses the direct calculation of strain-range components from experimental data associated with large strains. It then explains how the method can be extended to the treatment of very low inelastic strains by adjusting tensile and compressive hold periods and continuous cycling frequencies. The chapter then begins the presentation of the second approach, called the total strain-range method, so named because it combines elastic and inelastic strain into a total strain range. The discussion covers important features, procedures, and correlations as well as the use of models and the steps involved in predicting thermomechanical fatigue (TMF) life. It also includes information on isothermal fatigue, bithermal creep-fatigue testing, and the predictability of the method for TMF cycling.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980009
EISBN: 978-1-62708-342-3
Abstract
The hot-working process extrusion is used to produce semifinished products in the form of bar, strip, and solid sections, as well as tubes and hollow sections. The first part of this chapter describes the composition, properties, and applications of tin and lead extruded products with a deformation temperature range of 0 to 300 deg C and magnesium and aluminum extruded products with a working temperature range of 300 to 600 deg C. The second part focuses on copper alloy extruded products, extruded titanium alloy products, and extruded products in iron alloys with a working temperature range of 600 to 1300 deg C.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980059
EISBN: 978-1-62708-342-3
Abstract
This chapter opens with a discussion of the classification of rod and tube extrusion processes. The standard processes involve hot working (extrusion at temperatures above room temperature), but some specialized cold working processes are also used for rod and tube extrusion. The next section reviews principles, variations, thermal conditions, axial load calculation, material flow, and applications of direct extrusion and indirect extrusion, with examples provided for extrusion of aluminum and copper alloys. Next, the chapter focuses on the process principles, advantages, and applications of conventional hydrostatic extrusion and thick film processes. This is followed by sections providing information on the special extrusion processes, namely conform process and cable sheathing. The chapter ends with a discussion on direct and indirect tube extrusion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980195
EISBN: 978-1-62708-342-3
Abstract
Compared with other deformation processes used to produce semifinished products, the hot-working extrusion process has the advantage of applying pure compressive forces in all three force directions, enhancing workability. The available variations in the extrusion process enable a wide spectrum of materials to be extruded. This chapter focuses on the processes involved in the extrusion of semifinished products in various metals and their alloys, namely tin, lead, lead-base soft solders, tin-base soft solders, zinc, magnesium, aluminum, copper, titanium, zirconium, iron, nickel, and powder metals. It discusses their properties and applications as well as suitable equipment for extrusion. It further discusses the processes involved in the extrusion of semifinished products in exotic alloys and extrusion of semifinished products from metallic composite materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980417
EISBN: 978-1-62708-342-3
Abstract
This chapter begins with a description of the requirements of tooling and tooling material for hot extrusion. It covers the processes of designing tool and die sets for direct and indirect extrusion. Next, the chapter provides information on extrusion tooling and die sets for direct external and internal shape production and tools for copper alloy extrusion. Further, it addresses design, calculation, and dimensioning of single-piece and two-part containers and describes induction heating for containers. Information on static- and elastic-based analysis and dimensioning of containers loaded in three dimensions is provided. Examples of calculations for different containers, along with their stresses and dimensions, are presented and the manufacture, operation, and maintenance of containers are described. The chapter further discusses the properties and applications of hot working materials for the manufacture of extrusion tooling and of different extruded materials for the manufacture of extrusion tooling for direct and indirect forming.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980567
EISBN: 978-1-62708-342-3
Abstract
This appendix contains tables listing the approximate composition of materials for the extrusion process. The materials covered are aluminum alloys, magnesium and magnesium alloys, copper and copper alloys, cobalt alloys, nickel and nickel alloys, iron alloys, steels, lead, tin, zinc alloys, molybdenum, niobium, tantalum, zirconium alloys, titanium, and titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980001
EISBN: 978-1-62708-342-3
Abstract
This chapter provides an overview of the basic principles and historic development of metal extrusion processes. It starts by illustrating the two major process categories: direct extrusion and indirect extrusion. It then briefly defines hydrostatic extrusion and the conform process. The history coverage addresses early patents for extrusion of lead at the turn of the 17th century up through the major process innovations in the 20th century.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980141
EISBN: 978-1-62708-342-3
Abstract
This chapter explains the basic terminology and principles of metallurgy as they apply to extrusion. It begins with an overview of crystal structure in metals and alloys, including crystal defects and orientation. This is followed by sections discussing the development of the continuous cast microstructure of aluminum and copper alloys. The discussion provides information on billet and grain segregation and defects in continuous casting. The chapter then discusses the processes involved in the deformation of pure metals and alloys at room temperature. Next, it describes the characteristics of pure metals and alloys at higher temperatures. The processes involved in extrusion are then covered. The chapter provides details on how the toughness and fracture characteristics of metals and alloys affect the extrusion process. The weld seams in hollow profiles, the production of composite profiles, and the processing of composite materials, as well as the extrusion of metal powders, are discussed. The chapter ends with a discussion on the factors that define the extrudability of metallic materials and how these attributes are characterized.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980323
EISBN: 978-1-62708-342-3
Abstract
The machinery and equipment required for rod and tube extrusion is determined by the specific extrusion process. This chapter provides a detailed description of the design requirements and principles of machinery and equipment for direct and indirect hot extrusion. It then covers the presses and auxiliary equipment for tube extrusion, induction furnaces for billet processing, handling systems for copper and aluminum alloy products, extrusion cooling systems, and age-hardening ovens. Next, the chapter describes the principles and applications of equipment for the production of aluminum and copper billets. Then, it focuses on process control in both direct and indirect hot extrusion of aluminum alloys without lubrication. The chapter describes the technology of electrical and electronic controls in the extrusion process. It ends with a discussion on the factors that influence the productivity and quality of the products in the extrusion process and methods for process optimization.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980551
EISBN: 978-1-62708-342-3
Abstract
The aim of every extrusion plant is the efficient production of competitive products that meet the appropriate quality requirements. This chapter discusses the processes involved in the selection and introduction of a quality management system, along with its application, advantages, and disadvantages. It describes the process chain for order processing within the quality circle and provides information on product liability legal issues. In addition, the chapter discusses the processes involved in quality control, along with its organization, responsibilities, audits, and testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980565
EISBN: 978-1-62708-342-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.9781627083423
EISBN: 978-1-62708-342-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870157
EISBN: 978-1-62708-344-7
Abstract
This chapter deals with the effects of fatigue in rotating shafts subjected to elastic and plastic strains associated with bending stresses. It begins with a review of the basic approach to treating low-cycle fatigue in bending, explaining that the assumption that stress is proportional to strain is incorrect due to plastic flow, causing considerable discrepancy between measured and calculated stresses. Data plots of the axial and bending fatigue characteristics of a 4130 steel help illustrate the problem. A closed-form solution is then presented and used to analyze the effects of flexural bending on solid as well as hollow rectangular and round bars. The chapter also discusses the difference in the treatment of a rotating shaft in which all surface elements undergo the same stress and strain and a nonrotating shaft in which a few surface elements carry most of the load. The difference, as explained, is due to the volumetric effect of stress in fatigue.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870237
EISBN: 978-1-62708-344-7
Abstract
This chapter focuses on the processes and mechanisms involved in fatigue. It begins with a review of some of the early theories of fatigue and the tools subsequently used to obtain a better understanding of the fatigue process. It then explains how plasticity plays a major role in creating dislocations, breaking up grains into subgrains, and causing microscopic imperfections to coalesce into larger flaws. It also discusses the factors that contribute to the development and propagation of fatigue cracks, including surface deterioration, volumetric and environmental effects, foreign particles, and stresses generated by rolling contact.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870375
EISBN: 978-1-62708-344-7
Abstract
This appendix provides supplemental information on the metallurgical aspects of atomic structure, the use of dislocation theory, heat treatment processes and procedures, important engineering materials and strengthening mechanisms, and the nature of elastic, plastic, and creep strain components. It also provides information on mechanical property and fatigue testing, the use of hysteresis energy to analyze fatigue, a procedure for inverting equations to solve for dependent variables, and a method for dealing with the statistical nature of failure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040051
EISBN: 978-1-62708-300-3
Abstract
This chapter covers the fundamentals of metal flow and the tools and techniques used to predict and control it. It begins by illustrating the local state of stress in a metal cylinder during upset forging and showing how stress components can be expressed in matrix form. It then explains how to determine the onset of yielding, which corresponds to the start of plastic deformation and the flow of metal within the workpiece. The chapter then goes on to present two important yield criteria, one based on shear stress (Tresca criterion), the other on distortion energy (von Mises criterion). It compares and contrasts the two methods and demonstrates their use as flow rules. It also explains how to calculate effective strain and strain rate and includes a brief discussion on the mechanical energy consumed during deformation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860001
EISBN: 978-1-62708-348-5
Abstract
Many scientific-technological advances depend critically on solid-state elastic properties, their magnitudes, and their responses to variables like stress and temperature. This chapter provides the definitions and descriptions of elastic constants and emphasizes five aspects of engineering-material solid-state elastic constants: general properties; interrelationships; relationships, especially thermodynamic to other physical properties; changes during cooling from ambient to near-zero temperature; and near-zero-temperature behavior.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860047
EISBN: 978-1-62708-348-5
Abstract
Specific heat is a fundamental property that relates the total heat per unit mass added to a system to the resultant temperature change of the system. This chapter begins with the definition and historical development of specific heat. Thermodynamic and solid state relationships are presented which include discussions about lattice specific heat and the effects of magnetic and superconducting transitions. Data sources for practical applications and methods of estimating specific heat for materials are also included. The chapter concludes with a section concerning the measurement of specific heat at low temperatures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860075
EISBN: 978-1-62708-348-5
Abstract
Specific heat and thermal expansion are closely related. Following a discussion on thermal expansion theory, methods of measurement techniques are presented along with their advantages and disadvantages. The results of the measurements are then summarized for three classes of materials: metallics, nonmetallics, and composites. Because predicting thermal expansion values for unmeasured or novel materials is useful, the chapter also describes the means of making educated guesses for low-temperature values. A short discussion on how thermal expansion data can be used is followed by a section describing where such data can be found.