Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 50
Flow stress
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400073
EISBN: 978-1-62708-316-4
Abstract
This chapter describes the formability and forming characteristics of low-carbon sheet steels, coated sheet steels, stainless steels, and aluminum and magnesium alloys. It provides property data as well as flow stress curves for numerous grades of each material and explains how composition, microstructure, and processing methods influence forming behaviors.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400221
EISBN: 978-1-62708-316-4
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500107
EISBN: 978-1-62708-317-1
Abstract
This chapter discusses the forming characteristics of dual-phase (DP) and transformation-induced plasticity (TRIP) steels. It begins with a review of the mechanical behavior of advanced high-strength steels (AHSS) and how they respond to stress-strain conditions associated with deformation processes such as stretching, bending, flanging, deep drawing, and blanking. It then describes the complex tribology of AHSS forming operations, the role of lubrication, the effect of tool steels and coatings, and the force and energy requirements of various forming presses. It also discusses the cause of springback and explains how to predict and compensating for its effects.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060111
EISBN: 978-1-62708-343-0
Abstract
This chapter explains why it is sometimes necessary to separate inelastic from elastic strains and how to do it using one of two methods. It first discusses the direct calculation of strain-range components from experimental data associated with large strains. It then explains how the method can be extended to the treatment of very low inelastic strains by adjusting tensile and compressive hold periods and continuous cycling frequencies. The chapter then begins the presentation of the second approach, called the total strain-range method, so named because it combines elastic and inelastic strain into a total strain range. The discussion covers important features, procedures, and correlations as well as the use of models and the steps involved in predicting thermomechanical fatigue (TMF) life. It also includes information on isothermal fatigue, bithermal creep-fatigue testing, and the predictability of the method for TMF cycling.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980009
EISBN: 978-1-62708-342-3
Abstract
The hot-working process extrusion is used to produce semifinished products in the form of bar, strip, and solid sections, as well as tubes and hollow sections. The first part of this chapter describes the composition, properties, and applications of tin and lead extruded products with a deformation temperature range of 0 to 300 deg C and magnesium and aluminum extruded products with a working temperature range of 300 to 600 deg C. The second part focuses on copper alloy extruded products, extruded titanium alloy products, and extruded products in iron alloys with a working temperature range of 600 to 1300 deg C.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980059
EISBN: 978-1-62708-342-3
Abstract
This chapter opens with a discussion of the classification of rod and tube extrusion processes. The standard processes involve hot working (extrusion at temperatures above room temperature), but some specialized cold working processes are also used for rod and tube extrusion. The next section reviews principles, variations, thermal conditions, axial load calculation, material flow, and applications of direct extrusion and indirect extrusion, with examples provided for extrusion of aluminum and copper alloys. Next, the chapter focuses on the process principles, advantages, and applications of conventional hydrostatic extrusion and thick film processes. This is followed by sections providing information on the special extrusion processes, namely conform process and cable sheathing. The chapter ends with a discussion on direct and indirect tube extrusion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980195
EISBN: 978-1-62708-342-3
Abstract
Compared with other deformation processes used to produce semifinished products, the hot-working extrusion process has the advantage of applying pure compressive forces in all three force directions, enhancing workability. The available variations in the extrusion process enable a wide spectrum of materials to be extruded. This chapter focuses on the processes involved in the extrusion of semifinished products in various metals and their alloys, namely tin, lead, lead-base soft solders, tin-base soft solders, zinc, magnesium, aluminum, copper, titanium, zirconium, iron, nickel, and powder metals. It discusses their properties and applications as well as suitable equipment for extrusion. It further discusses the processes involved in the extrusion of semifinished products in exotic alloys and extrusion of semifinished products from metallic composite materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980417
EISBN: 978-1-62708-342-3
Abstract
This chapter begins with a description of the requirements of tooling and tooling material for hot extrusion. It covers the processes of designing tool and die sets for direct and indirect extrusion. Next, the chapter provides information on extrusion tooling and die sets for direct external and internal shape production and tools for copper alloy extrusion. Further, it addresses design, calculation, and dimensioning of single-piece and two-part containers and describes induction heating for containers. Information on static- and elastic-based analysis and dimensioning of containers loaded in three dimensions is provided. Examples of calculations for different containers, along with their stresses and dimensions, are presented and the manufacture, operation, and maintenance of containers are described. The chapter further discusses the properties and applications of hot working materials for the manufacture of extrusion tooling and of different extruded materials for the manufacture of extrusion tooling for direct and indirect forming.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980567
EISBN: 978-1-62708-342-3
Abstract
This appendix contains tables listing the approximate composition of materials for the extrusion process. The materials covered are aluminum alloys, magnesium and magnesium alloys, copper and copper alloys, cobalt alloys, nickel and nickel alloys, iron alloys, steels, lead, tin, zinc alloys, molybdenum, niobium, tantalum, zirconium alloys, titanium, and titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980001
EISBN: 978-1-62708-342-3
Abstract
This chapter provides an overview of the basic principles and historic development of metal extrusion processes. It starts by illustrating the two major process categories: direct extrusion and indirect extrusion. It then briefly defines hydrostatic extrusion and the conform process. The history coverage addresses early patents for extrusion of lead at the turn of the 17th century up through the major process innovations in the 20th century.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980141
EISBN: 978-1-62708-342-3
Abstract
This chapter explains the basic terminology and principles of metallurgy as they apply to extrusion. It begins with an overview of crystal structure in metals and alloys, including crystal defects and orientation. This is followed by sections discussing the development of the continuous cast microstructure of aluminum and copper alloys. The discussion provides information on billet and grain segregation and defects in continuous casting. The chapter then discusses the processes involved in the deformation of pure metals and alloys at room temperature. Next, it describes the characteristics of pure metals and alloys at higher temperatures. The processes involved in extrusion are then covered. The chapter provides details on how the toughness and fracture characteristics of metals and alloys affect the extrusion process. The weld seams in hollow profiles, the production of composite profiles, and the processing of composite materials, as well as the extrusion of metal powders, are discussed. The chapter ends with a discussion on the factors that define the extrudability of metallic materials and how these attributes are characterized.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980323
EISBN: 978-1-62708-342-3
Abstract
The machinery and equipment required for rod and tube extrusion is determined by the specific extrusion process. This chapter provides a detailed description of the design requirements and principles of machinery and equipment for direct and indirect hot extrusion. It then covers the presses and auxiliary equipment for tube extrusion, induction furnaces for billet processing, handling systems for copper and aluminum alloy products, extrusion cooling systems, and age-hardening ovens. Next, the chapter describes the principles and applications of equipment for the production of aluminum and copper billets. Then, it focuses on process control in both direct and indirect hot extrusion of aluminum alloys without lubrication. The chapter describes the technology of electrical and electronic controls in the extrusion process. It ends with a discussion on the factors that influence the productivity and quality of the products in the extrusion process and methods for process optimization.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980551
EISBN: 978-1-62708-342-3
Abstract
The aim of every extrusion plant is the efficient production of competitive products that meet the appropriate quality requirements. This chapter discusses the processes involved in the selection and introduction of a quality management system, along with its application, advantages, and disadvantages. It describes the process chain for order processing within the quality circle and provides information on product liability legal issues. In addition, the chapter discusses the processes involved in quality control, along with its organization, responsibilities, audits, and testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980565
EISBN: 978-1-62708-342-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.9781627083423
EISBN: 978-1-62708-342-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.9781627083003
EISBN: 978-1-62708-300-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040001
EISBN: 978-1-62708-300-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040007
EISBN: 978-1-62708-300-3
Abstract
This chapter explains that the key to forging is understanding and controlling metal flow and influential factors such as tool geometry, the mechanics of interface friction, material characteristics, and thermal conditions in the deformation zone. It also reviews common forging processes, including closed-die forging, extrusion, electrical upsetting, radial forging, hobbing, isothermal forging, open-die forging, orbital forging, and coining.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040017
EISBN: 978-1-62708-300-3
Abstract
This chapter discusses the role of plastic deformation in forging and the effect of strain and strain rate on metal flow. It demonstrates the use of stress tensors and shows how metal flow can be represented qualitatively by the displacement of volume elements and quantitatively by the distribution of velocity components and strain rates. It describes the conditions associated with homogeneous deformation in a frictionless upset forging and explains how they can also be obtained using engineering and true stress-strain curves.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040025
EISBN: 978-1-62708-300-3
Abstract
This chapter explains how to determine flow stress and forgeability using data from tensile tests, compression tests, ring tests, and torsion tests. It describes sample preparation, tooling and equipment, test procedures, error sources, and data plotting techniques. It also provides a significant amount of experimentally derived flow stress data, including K and n values for steel, copper, and aluminum alloys, C and m values (at various temperatures) for steel, aluminum, copper, titanium, and other alloys, and average flow stress for several alloys determined by compression testing.