Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 23
Core hardness
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250163
EISBN: 978-1-62708-345-4
Abstract
Gas (atmosphere) carburizing is the de facto standard by which all other surface hardening techniques are measured and is the emphasis of this chapter. Initially, the chapter describes the process and equipment for gas carburizing. This is followed by sections discussing the processes involved in quenching, hardening, tempering, recarburizing, and cold treatment of carburized and quenched gears. Next, the chapter reviews the selection process of materials for carburized gears and provides information on carbon content, properties, and core hardness of gear teeth. The problems associated with carburizing are then covered, followed by the processes involved in heat treat distortion and shot peening of carburized and hardened gears. Information on grinding stock allowance on tooth flanks to compensate for distortion is also provided. The chapter further discusses the applications of carburized and hardened gears. Finally, it reviews vacuum carburizing and compares the attributes of conventional gas carburizing and vacuum carburizing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320001
EISBN: 978-1-62708-347-8
Abstract
Modern gears are made from a wide variety of materials. Of all these, steel has the outstanding characteristics of high strength per unit volume and low cost per pound. Although both plain carbon and alloy steels with equal hardness exhibit equal tensile strengths, alloy steels are preferred because of higher hardenability and the desired microstructures of the hardened case and core needed for the high fatigue strength of gears. This chapter provides an overview of the key considerations involved in the selection and application of heat treating processes for alloy steel gears and serves as an introduction to the subsequent chapters in this book.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320005
EISBN: 978-1-62708-347-8
Abstract
The properties of steel are affected markedly as the percentage of carbon varies. This chapter describes the properties of alloys of iron and carbon, including a review of the iron-carbon phase diagram and, in particular, the portion of the diagram relevant to carbon steels. It addresses the processes involved in the transformation (decomposition) of austenite to achieve various microstructures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320017
EISBN: 978-1-62708-347-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320021
EISBN: 978-1-62708-347-8
Abstract
Through-hardening heat treatment is generally used for gears that do not require high surface hardness. In through hardening, gears are first heated to a required temperature and then cooled either in the furnace or quenched in air, gas, or liquid. Four heat treatment methods are primarily used for through-hardened gears: annealing, normalizing and annealing, normalizing and tempering, and quenching and tempering. This chapter begins with a discussion of these through-hardening processes. This is followed by sections providing some factors affecting the design and hardness levels of through-hardened gears. Next, the chapter reviews the considerations related to distortion of through-hardened gears. It then discusses the applications of through-hardened gears. Finally, the chapter presents a case history of the design and manufacture of a through-hardened gear rack.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320033
EISBN: 978-1-62708-347-8
Abstract
The primary objective of carburizing and hardening gears is to secure a hard case and a relatively soft but tough core. For this process, low-carbon steels (up to a maximum of approximately 0.30% carbon), either with or without alloying elements (nickel, chromium, manganese, molybdenum), normally are used. The processes involved in hardening, tempering, recarburizing, and cold treatment of carburized and quenched gears are discussed. Next, the chapter reviews the selection of materials for carburized gears and considerations related to carbon content, core hardness, and microstructure. This is followed by sections discussing some problems that can be experienced in the carburizing process and how these can be addressed, including a section on shot peening to induce compressive residual stress at and below the surface. It then discusses the applications of carburized gears and finally presents a case history of distortion control of carburized and hardened gears.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320133
EISBN: 978-1-62708-347-8
Abstract
Nitriding is a case-hardening process used for alloy steel gears and is quite similar to case carburizing. Nitriding of gears can be done in either a gas or liquid medium containing nitrogen. This chapter discusses the processes involved in gas nitriding. It reviews the effects of white layer formation in nitrided gears and presents general recommendations for nitrided gears. The chapter describes the microstructure, overload and fatigue damage, bending-fatigue life, cost, and distortion of nitrided gears. Information on nitriding steels used in Europe and the applications of nitrided gears are also provided. The chapter presents case studies on successful nitriding of a gear and on the failure of nitrided gears used in a gearbox subjected to a load with wide fluctuations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320159
EISBN: 978-1-62708-347-8
Abstract
Several limitations in achieving optimal gear performance with conventional nitriding have led researchers to work on a variety of novel and improved nitriding processes. Of these, ion/plasma nitriding offers some promising results, which are reviewed in this chapter. The chapter concludes with a case history describing the application of ion nitriding to an internal ring gear of an epicyclic gearbox.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320171
EISBN: 978-1-62708-347-8
Abstract
Carbonitriding is a process in which carbon and alloy steel gears are held at a temperature above the transformation range in a gaseous atmosphere of such composition that the steel absorbs carbon and nitrogen simultaneously. The gears are then cooled at a specific rate to room temperature that produces the desired properties. Carbonitriding is generally regarded as a modified gas carburizing process, rather than a form of nitriding. This chapter briefly describes the case depth that can be achieved with carbonitriding, how case depth is measured, and the materials and applications that are suitable for carbonitriding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320175
EISBN: 978-1-62708-347-8
Abstract
Some gears may need to be hardened only at the surface without altering the chemical composition of the surface layers. Induction hardening may be a suitable processing choice in these cases. This chapter provides information on the wide variety of materials that can be induction hardened and on process details involved in induction hardening gears. It discusses the processes involved in heating, quenching, and tempering of gears. Information on surface hardness and case depth after induction hardening, induction hardening problems, the applications of induction hardening gears, and the advancements in induction hardening are also provided.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320185
EISBN: 978-1-62708-347-8
Abstract
The successful design and manufacture of gears are influenced largely by design requirements, material selection, and proper heat treatment. This chapter addresses the cost factors and tradeoffs involved in selecting a material, design features, and a heat treating process to optimize gear performance for a particular application.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320189
EISBN: 978-1-62708-347-8
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.9781627083478
EISBN: 978-1-62708-347-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770001
EISBN: 978-1-62708-337-9
Abstract
This chapter provides a brief but practical overview of the case carburizing process. It discusses the benefits and challenges of the process and compares and contrasts it with other hardening methods. It explains how design allowables and safety factors compensate for unknowns and familiarizes readers with the steps involved in determining case depth and verifying that case carbon requirements have been met.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770011
EISBN: 978-1-62708-337-9
Abstract
Gas carburizing is known to promote internal oxidation in steel which can adversely affect certain properties. This chapter discusses the root of the problem and its effect on component lifetime and performance. It explains that gas-carburizing atmospheres contain water vapor and carbon dioxide, providing oxygen that reacts with alloying elements, particularly manganese, chromium, and silicon. It examines the composition and distribution of oxides produced in different steels and assesses the resulting composition gradients. It describes how these changes influence the development of high-temperature transformation products as well as microstructure, hardenability, and carbon content and properties such as fatigue and fracture behaviors, hardness, and wear resistance. It also explains how to manage internal oxidation through material design, process control, and other measures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770037
EISBN: 978-1-62708-337-9
Abstract
This chapter explains how decarburization can occur during carburizing processes and how to limit the severity of its effects. It describes the reactions and conditions that result in a loss of carbon atoms and how they vary with changes in the physical metallurgy of the affected material and the processing environment. It examines the characteristic features of decarburized microstructures and assesses their influence on hardness, residual stresses, and fatigue and fracture behaviors. It also discusses corrective measures and practical considerations regarding their use.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770051
EISBN: 978-1-62708-337-9
Abstract
This chapter discusses the formation of free carbides and their effect on case-carburized components. It explains how alloying elements influence the composition and structure of carbide phases produced at cooling rates typical of carburizing process. It describes the morphology and distribution of the various types of carbides formed and explains how they affect mechanical properties such as hardness, residual stresses, fatigue and fracture behaviors, and wear resistance. It also provides guidance for determining what processing conditions to avoid and when and why parts should be rejected.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770077
EISBN: 978-1-62708-337-9
Abstract
This chapter addresses the issue of retained austenite in quenched carburized steels. It explains why retained austenite can be expected at the surface of case-hardened components, how to estimate the amount that will be present, and how to effectively stabilize or otherwise control it. It presents detailed images and data plots showing how retained austenite appears and how it influences hardness, tensile properties, residual stresses, fatigue and fracture behaviors, and wear resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770099
EISBN: 978-1-62708-337-9
Abstract
This chapter is a study of the microstructure of case-hardened steels. It explains what can be learned by examining grain size, microcracking, nonmetallic inclusions, and the effects of microsegregation. It identifies information-rich features, describing their ideal characteristics, the likely cause of variations observed, and their effect on mechanical properties and behaviors. The discussions throughout the chapter are aided by the use of images, diagrams, data plots, and tables.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770135
EISBN: 978-1-62708-337-9
Abstract
The design of case-hardened components is an iterative process, requiring the consideration of multiple interrelated factors. This chapter walks readers through the steps involved in selecting an appropriate material and assessing the influence of alloy composition and cooling rate on core properties including hardenability, microstructure, tensile and yield strength, ductility, toughness, and fatigue resistance. It likewise explains how carbon affects case hardenability, surface hardness, and case toughness and how case depth influences residual stresses and bending and contact fatigue. It also discusses the effect of quenching methods and addresses the issue of distortion.
1