Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-10 of 10
Electrochemical potential
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940087
EISBN: 978-1-62708-302-7
Abstract
This chapter lays the groundwork for understanding electrode kinetics associated with corrosion. It presents a simple but useful theory relating kinetics to the polarization behavior of half-cell reactions. The theory is based on the observation that electrode potentials vary as a function of current density or charge transfer in a given area. The chapter explains how to measure and plot electrode potentials and currents and how to interpret the resulting polarization curves. It also discusses the effects of concentration gradients, explaining how they cause diffusion and, in some cases, produce changes in electrode potential.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940127
EISBN: 978-1-62708-302-7
Abstract
This chapter develops a corrosion model that accounts for solution potentials and the effects of coupling between cathodic and anodic reactions. It begins by examining potential differences at various points (in the solution) along a path from the anode to the cathode area. It then presents a simple model of a galvanically coupled electrode, in which the metal is represented as an array of anode and cathode reaction surfaces. The chapter goes on to develop the related theory of mixed electrodes, showing how it can be used to predict corrosion rates based on measured potentials and current densities, polarization characteristics, and physical variables such as anode-to-cathode area ratios and fluid velocity. It also discusses the effect of corrosion inhibitors, galvanic coupling, and external currents, making extensive use of polarization curves.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940233
EISBN: 978-1-62708-302-7
Abstract
This chapter discusses the principles and procedures of electrochemical measurements used to investigate corrosion behaviors. It begins by presenting a diagram of a basic potentiostatic circuit, which consists of a working electrode and an auxiliary or counter electrode suspended in an electrolytic solution. It describes how corrosion potentials and current densities are measured and explains how to deal with various sources of error. It also explains how electrochemical impedance measurements are used and describes the underlying theory and procedures in some detail.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940001
EISBN: 978-1-62708-302-7
Abstract
This chapter familiarizes readers with the basic concepts of corrosion, discussing chemical reactions, ion transfer mechanisms, electrochemical processes and variables, and the formation of solid corrosion products. It presents a simple but effective teaching tool, the elementary electrochemical corrosion circuit, using it to explain how electric potential differences drive the corrosion process and how corrosion rates vary in proportion to current density. The chapter concludes with a discussion on the importance of corrosion products, such as oxides and hydroxides, and how their formation can be a major factor in controlling corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940023
EISBN: 978-1-62708-302-7
Abstract
This chapter provides a thorough introduction to the electrochemical thermodynamics that govern electrode reactions associated with corrosion. It begins with a review of the thermodynamic criteria for the stability of chemical reactions based on Gibbs free energy and explains how energies of formation are determined using the oxidation of iron as an example. It then considers how iron reacts with hydrochloric acid, explaining how it can be expressed as two half reactions modeled as electrodes in an electrochemical cell. It goes on to describe the chemical reactions occurring at each electrode, accounting for different variables, mechanisms, and electrochemical effects. The chapter concludes with an in-depth review of Pourbaix diagrams, explaining what they reveal about the stability of metal-water systems and the formation of corrosion products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940183
EISBN: 978-1-62708-302-7
Abstract
This chapter discusses the complex polarization characteristics of active-passive metals and addresses related problems in interpreting their corrosion behavior. It begins by presenting several experimentally derived polarization curves for iron, comparing and contrasting them with the iron-water Pourbaix diagram. It then explains how anodic polarization is extremely sensitive to the environment and, as a result, a reasonably complete curve for a given metal-environment system usually can only be inferred. It goes on to describe how such curves are constructed, demonstrating the procedures for a wide range of alloys and environments. The examples also show how factors such as alloy concentration, crystal lattice orientation, temperature, and dissolved oxygen affect corrosion behavior.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940271
EISBN: 978-1-62708-302-7
Abstract
This chapter is a detailed study of the localized corrosion behavior of steel, copper, and aluminum alloys. It applies the basic principles of electrochemistry, as well as materials science and solid and fluid mechanics, to explain the causes and effects of pitting, crevice corrosion, stress corrosion cracking, and corrosion fatigue. It describes the underlying mechanisms associated with each process and how they relate to the microstructure of the metal or alloy, the physical condition of the surface, and other factors such as the coupling of the metal to a dissimilar metal or surface film.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940451
EISBN: 978-1-62708-302-7
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.9781627083027
EISBN: 978-1-62708-302-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910049
EISBN: 978-1-62708-250-1
Abstract
This chapter discusses the principles of corrosion of metals in aqueous environments. The thermodynamics of aqueous corrosion is the subject of the first half of this chapter, which addresses concepts such as corrosion reactions and free-energy change, the relationship between free energy and electrochemical potential, the effect of ionic concentration on electrode potential, and the corrosion behavior of a metal based on its potential-pH diagram. The corrosion (potential-pH) behavior of iron, gold, copper, zinc, aluminum, and titanium are described. Understanding the kinetics of corrosion and the factors that control the rates of corrosion reactions requires examination of the concepts of polarization behavior and identification of the various forms of polarization in an electrochemical cell. These concepts, addressed in the remaining of this chapter, include anodic and cathodic reactions, the mixed-potential theory, and the exchange currents.