Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 25
Electrical properties
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Book: Introduction to Thin Film Deposition Techniques: Key Topics in Materials Science and Engineering
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.t56060001
EISBN: 978-1-62708-440-6
Abstract
This chapter presents the theory and practice associated with the application of thin films. The first half of the chapter describes physical deposition processes in which functional coatings are deposited on component surfaces using mechanical, electromechanical, or thermodynamic techniques. Physical vapor deposition (PVD) techniques include sputtering, e-beam evaporation, arc-PVD, and ion plating and are best suited for elements and compounds with moderate melting points or when a high-purity film is required. The remainder of the chapter covers chemical vapor deposition (CVD) processes, including atomic layer deposition, plasma-enhanced and plasma-assisted CVD, and various forms of vapor-phase epitaxy, which are commonly used for compound films or when deposit purity is less critical. A brief application overview is also presented.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.9781627084406
EISBN: 978-1-62708-440-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050009
EISBN: 978-1-62708-311-9
Abstract
This chapter discusses the basic principles of induction heating and related engineering considerations. It describes the design and operation of induction coils, the magnitude and distribution of magnetic fields, and the forces that generate eddy currents in metals. It explains how induced electrical current causes metal to heat in proportion to their electrical resistance and how it affects temperature dependent properties such as resistivity and specific heat and, in turn, heating rates and efficiencies. It also discusses the effect of hysteresis and explains why eddy currents tend to be confined to the outer surface of the workpiece, a phenomenon known as the skin effect. The chapter includes several data plots showing how the depth of heating varies with frequency and how heating time, power density, and thermal conduction rate correspond with hardening depth.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730037
EISBN: 978-1-62708-283-9
Abstract
This chapter examines some of the behaviors that suit materials for electrical and electronic applications. It begins by explaining how charge carriers move in metals and semiconductors and how properties such as conductivity, mobility, and resistivity are derived. It discusses the significance of energy bands, intrinsic and extrinsic conduction, and the properties of compound semiconductors. It also covers semiconductor devices, including p-n junctions, light emitting diodes, transistors, and piezoelectric crystals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730161
EISBN: 978-1-62708-283-9
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.9781627082839
EISBN: 978-1-62708-283-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060469
EISBN: 978-1-62708-261-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310279
EISBN: 978-1-62708-286-0
Abstract
This appendix contains tables listing the physical and mechanical properties of stainless steel engineering alloys. The physical properties covered are density, modulus of elasticity, coefficient of thermal expansion, thermal conductivity, specific heat, and electrical resistivity. The mechanical properties listed include yield strength, tensile strength, elongation and hardness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240303
EISBN: 978-1-62708-251-8
Abstract
The physical properties of a material are those properties that can be measured or characterized without the application of force and without changing material identity. This chapter discusses in detail the common physical properties of metals, namely density, electrical properties, thermal properties, magnetic properties, and optical properties. Some physical properties for a number of metals are given in a table.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780164
EISBN: 978-1-62708-281-5
Abstract
This article discusses electrical testing and recommended procedures for determining the electrical properties of insulating materials, with particular emphasis on plastics. It describes the electrical characteristics of various forms of plastics and also presents definitions of the terms used in connection with testing and specifying plastics for electrical applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170457
EISBN: 978-1-62708-297-6
Abstract
This article discusses the composition, properties, and behaviors of copper and its alloys. It begins with an overview of the characteristics, applications, and commercial grades of wrought and cast copper. It then discusses the role of alloying, explaining how zinc, tin, aluminum, silicon, and nickel affect the physical and mechanical properties of coppers and high-copper alloys as well as brasses, bronzes, copper-nickels, and nickel silvers. It also explains how alloying affects electrical conductivity, corrosion resistance, stress-corrosion cracking, and processing characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170596
EISBN: 978-1-62708-297-6
Abstract
This article explains how alloying elements affect the properties and behaviors of electrical contacts. It describes the composition, strength, hardness, and conductivity of a wide range of contact alloys and composites based on silver, copper, gold, platinum, palladium, tungsten, and molybdenum, and related oxides and carbides.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940087
EISBN: 978-1-62708-302-7
Abstract
This chapter lays the groundwork for understanding electrode kinetics associated with corrosion. It presents a simple but useful theory relating kinetics to the polarization behavior of half-cell reactions. The theory is based on the observation that electrode potentials vary as a function of current density or charge transfer in a given area. The chapter explains how to measure and plot electrode potentials and currents and how to interpret the resulting polarization curves. It also discusses the effects of concentration gradients, explaining how they cause diffusion and, in some cases, produce changes in electrode potential.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940127
EISBN: 978-1-62708-302-7
Abstract
This chapter develops a corrosion model that accounts for solution potentials and the effects of coupling between cathodic and anodic reactions. It begins by examining potential differences at various points (in the solution) along a path from the anode to the cathode area. It then presents a simple model of a galvanically coupled electrode, in which the metal is represented as an array of anode and cathode reaction surfaces. The chapter goes on to develop the related theory of mixed electrodes, showing how it can be used to predict corrosion rates based on measured potentials and current densities, polarization characteristics, and physical variables such as anode-to-cathode area ratios and fluid velocity. It also discusses the effect of corrosion inhibitors, galvanic coupling, and external currents, making extensive use of polarization curves.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940183
EISBN: 978-1-62708-302-7
Abstract
This chapter discusses the complex polarization characteristics of active-passive metals and addresses related problems in interpreting their corrosion behavior. It begins by presenting several experimentally derived polarization curves for iron, comparing and contrasting them with the iron-water Pourbaix diagram. It then explains how anodic polarization is extremely sensitive to the environment and, as a result, a reasonably complete curve for a given metal-environment system usually can only be inferred. It goes on to describe how such curves are constructed, demonstrating the procedures for a wide range of alloys and environments. The examples also show how factors such as alloy concentration, crystal lattice orientation, temperature, and dissolved oxygen affect corrosion behavior.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.9781627083027
EISBN: 978-1-62708-302-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910049
EISBN: 978-1-62708-250-1
Abstract
This chapter discusses the principles of corrosion of metals in aqueous environments. The thermodynamics of aqueous corrosion is the subject of the first half of this chapter, which addresses concepts such as corrosion reactions and free-energy change, the relationship between free energy and electrochemical potential, the effect of ionic concentration on electrode potential, and the corrosion behavior of a metal based on its potential-pH diagram. The corrosion (potential-pH) behavior of iron, gold, copper, zinc, aluminum, and titanium are described. Understanding the kinetics of corrosion and the factors that control the rates of corrosion reactions requires examination of the concepts of polarization behavior and identification of the various forms of polarization in an electrochemical cell. These concepts, addressed in the remaining of this chapter, include anodic and cathodic reactions, the mixed-potential theory, and the exchange currents.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200404
EISBN: 978-1-62708-354-6
Abstract
This chapter describes the physical properties of steels used for castings. The properties covered include density, modulus of elasticity, Poisson's ratio, shear modulus, thermal expansion, thermal conductivity, specific heat, thermal diffusivity, electrical resistivity, and magnetic properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220001
EISBN: 978-1-62708-341-6
Abstract
Electromagnetic induction, or simply "induction," is a method of heating electrically conductive materials such as metals. It is commonly used for heating workpieces prior to metalworking and in heat treating, welding, and melting. This technique also lends itself to various other applications involving packaging and curing of resins and coatings. This chapter provides a brief review of the history of induction heating and discusses its applications and advantages.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220009
EISBN: 978-1-62708-341-6
Abstract
An induction heating system consists of a source of alternating current (ac), an induction coil, and the workpiece to be heated. This chapter describes the basic phenomena underlying induction heating with respect to the interactions between the coil and the workpiece. The chapter reviews the mechanistic basis for induction heating and provides an example of eddy-current distribution in a solid bar. The chapter defines two important concepts in the technology of induction heating: equivalent resistance and electrical efficiency. The chapter concludes with a discussion of methods for determination of power requirements for a given application.
1