Skip Nav Destination
Close Modal
By
Omar Maluf, Luciana Sgarbi Rossino, Camilo Bento Carletti, Celso Roberto Ribeiro, Clever Ricardo Chinaglia ...
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-13 of 13
Decarburization
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310127
EISBN: 978-1-62708-326-3
Abstract
This chapter describes the general characteristics of major types of steel annealing, including the process of normalization, which is a process that refines or normalizes the microstructure of steel. The first part of the chapter begins with an overview of the three-stage process of recovery, recrystallization, and grain growth. This is followed by discussions on annealing processes, namely subcritical annealing, critical-range annealing, full annealing, isothermal annealing, annealing for microstructure, and solution or quench annealing. Next, the chapter describes two undesirable reactions that occur during annealing: decarburization and scaling. Information on the gases and gas mixtures used for controlled atmospheres is then provided. The second part of the chapter focuses on the processes involved in normalizing, along with information on furnace equipment for normalizing. In addition, the chapter includes information on processes involved in induction heating of steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250093
EISBN: 978-1-62708-287-7
Abstract
This chapter discusses the development of stainless steel. It begins with some information on the discovery of stainless steel. This is followed by a discussion on the most important patents issued for stainless steel. Applications of stainless steel beyond their original use in cutlery and tableware are then presented. Information on the development of alloys for specific applications and on the argon oxygen decarburization process is also provided. The chapter ends with a discussion on the major use for stainless steel after WWII.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050175
EISBN: 978-1-62708-311-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790175
EISBN: 978-1-62708-356-0
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130151
EISBN: 978-1-62708-284-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240433
EISBN: 978-1-62708-251-8
Abstract
This chapter discusses the classification, composition, properties, and applications of five types of stainless steels: austenitic, ferritic, duplex, martensitic, and precipitation-hardening steels. It discusses the process involved in argon oxygen decarburization that is used to refine stainless steel. The chapter also provides information on the classification and composition of stainless steel castings. It concludes with a brief description of the Schaeffler constitution diagram which is useful in predicting the type of stainless steel as a function of its alloy content.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140063
EISBN: 978-1-62708-264-8
Abstract
Diffusion is the primary mechanism by which carbon atoms move or migrate in iron. It is driven by concentration gradients and aided by heat. This chapter provides a practical understanding of the diffusion process and its role in the production and treatment of steel. It discusses the factors that determine diffusion rates and distances, including time, temperature, and the relative size of the atoms involved. It also describes two heat treating methods, carburizing and decarburizing, where carbon diffusion plays a central role.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440275
EISBN: 978-1-62708-262-4
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280041
EISBN: 978-1-62708-267-9
Abstract
This chapter discusses the melting and conversion of superalloys and the solidification challenges they present. Superalloys have high solute content which can lead to untreatable defects if they solidify too slowly. These defects, called freckles, are highly detrimental to fatigue life. The chapter explains how and why freckles form as well as how they can be prevented. It describes the criteria for selecting the proper melting method for specific alloys based on melt segregation and chemistry requirements. It compares standard processes, including electric arc furnace/argon oxygen decarburization melting, vacuum induction melting, vacuum arc remelting, and electroslag remelting. It also addresses related issues such as consumable remelt quality, control anomalies, melt pool characteristics, and melt-related defects, and includes a section that discusses the processes involved in converting cast ingots into mill products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400049
EISBN: 978-1-62708-258-7
Abstract
Microstructures can be altered intentionally or unintentionally. In some cases, metallographers must diagnose what may have happened to the steel or cast iron based on the microstructural details. This chapter discusses how microstructure in steels and cast irons can be intentionally altered during heat treatment, solidification, and deformation (hot and cold working). Some specific examples are then shown to illustrate what can go wrong through unintentional changes in microstructure, for example, the loss of carbon from the surface of the steel by the process known as decarburization or the buildup of brittle carbides on the grain boundaries of an austenitic stainless steel by the process known as sensitization.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770037
EISBN: 978-1-62708-337-9
Abstract
This chapter explains how decarburization can occur during carburizing processes and how to limit the severity of its effects. It describes the reactions and conditions that result in a loss of carbon atoms and how they vary with changes in the physical metallurgy of the affected material and the processing environment. It examines the characteristic features of decarburized microstructures and assesses their influence on hardness, residual stresses, and fatigue and fracture behaviors. It also discusses corrective measures and practical considerations regarding their use.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.9781627082914
EISBN: 978-1-62708-291-4
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560361
EISBN: 978-1-62708-291-4
Abstract
This chapter discusses the thermally induced changes that occur on the surface of steel exposed to different environments. It explains how oxide scales form during heat treating and how factors such as temperature, composition, and surface finish affect growth rates, grain structure, and uniformity. It provides examples of oxides that form beneath the surface of steel and explains why it occurs. It describes the conditions associated with decarburization and explains how to determine the depth of decarburized layers in eutectoid, hypoeutectoid, and hypereutectoid steels. It also discusses the carburizing process, the factors that determine the depth and gradient of the carburized case, the effect of post-process treatments, and a variation on the process known as ferritic carbonitriding.