Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 130
Metal working
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390325
EISBN: 978-1-62708-459-8
Abstract
Forging is a deformation process achieved through the application of compressive stresses. During the stroke, pressures and velocities are continuously changing and the initial lubricant supply must suffice for the duration of the operation. Lubricant residues and pickup products also change with time, further complicating the analysis of friction and wear. This chapter provides a qualitative and quantitative overview of the mechanics and tribology of forging in all of its forms. It discusses the effects of friction, pressures, forces, and temperature on the deformation and flow of metals in open-die, closed-die, and impression-die forging and in back extrusion and piercing operations. It presents various ways to achieve fluid-film lubrication in upset forging processes and examines the cause of barreling, defect formation, and folding in the upsetting of cylinders, rings, and slabs. It also explains how to evaluate lubricants, friction, and wear under hot, cold, and warm forging conditions and how to extend die life and reduce defects when processing different materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390389
EISBN: 978-1-62708-459-8
Abstract
This chapter covers the mechanics and tribology of sheet metalworking processes, including shearing, bending, spinning, stretching, deep drawing, ironing, and hydroforming. It explains how to determine friction, wear, and lubrication needs based on process forces, temperatures, and strains and the effects of strain hardening on workpiece materials. It presents test methods for evaluating process tribology, describes lubrication and wear control approaches, and discusses the factors, such as surface roughness, lubricant breakdown, and adhesion, that can lead to galling and other forms of wear. It also provides best practices for selecting, evaluating, and applying lubricants for specific materials, including steels, stainless steels, and aluminum and magnesium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390569
EISBN: 978-1-62708-459-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390007
EISBN: 978-1-62708-459-8
Abstract
This chapter presents a qualitative and quantitative overview of the stresses, strains, forces, and energy associated with metalworking processes and the tribological behavior of metals. It covers key concepts necessary for understanding metalworking tribology, including plastic deformation, yield criteria, flow strength, and the application of flow rules. It explains how to calculate the work involved in deformation processes, how to assess the propensity for fracture, how to determine temperature rise and strain distribution in the workpiece, and how to classify metalworking processes based on related tribology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390019
EISBN: 978-1-62708-459-8
Abstract
This chapter examines the surface interactions that occur during metal forming operations at both the macroscopic and microscopic scale. It describes the measurement and characterization of surface profiles based on form error, waviness, and roughness. It explains how workpiece surfaces become rougher or smoother due to the effects of deformation, tooling interactions, and lubricant film thickness. It familiarizes readers with the concept of nominal contact, the role of asperities, and the effects of interface pressure, plasticity index, shear stress, and bulk strain rate. It also reviews the two basic friction rules applicable to metal forming and presents advanced friction models that account for the transition between Coulomb and Tresca behavior and the effects of lubrication.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390173
EISBN: 978-1-62708-459-8
Abstract
Rolling is unique in that it cannot be conducted without friction. Friction draws the workpiece into the roll gap and facilitates its passage through the deformation zone. This chapter provides an overview of the mechanics and tribology of flat rolling processes and explains how various aspects of the theory apply to shape rolling as well. It derives numerous equations and models to help quantify the forces, torque, and power involved in rolling operations and the associated heating, slip, strain distribution, and deformation in both the workpiece and rolls. It describes the friction and wear that occur in hot and cold rolling under hydrodynamic and mixed-film lubrication; the influence of viscosity, film thickness, rolling speed, interface pressure, pass reduction, and lubricant breakdown; and the effect of surface finish and defects. The chapter also provides best practices for evaluating, applying, and treating lubricants for industrially important materials including iron-base, nickel-base, and aluminum alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390241
EISBN: 978-1-62708-459-8
Abstract
Drawing is a bulk deformation process that involves significant surface generation and high pressures. This chapter provides an overview of the mechanics and tribology of wire, bar, tube, and shape drawing. It presents important equations for calculating stresses, forces, friction, heat, strain, and distortion for different tooling configurations and geometries. It explains how to select and apply lubricants based on drawing speed, die design, and other factors and how to maintain sufficient film thickness for hydrodynamic, mixed, and solid-film lubrication conditions. It also discusses the use of vibrating dies, the influence of surface finish and defects, and lubrication practices for specific materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390284
EISBN: 978-1-62708-459-8
Abstract
This chapter deals with the mechanics and tribology associated with the extrusion of bars, sections, and tubes. It covers direct and indirect extrusion processes in detail and demonstrates the use of important equations, relationships, and measurements for determining pressure, force, material flow, friction, die wear, heat generation, and lubrication requirements. The chapter also provides information on hydrostatic, friction-assisted, and severe plastic deformation extrusion processes, discusses the cause of instabilities and defects, and explains how to select and apply lubricants to minimize friction and die wear when extruding steel, aluminum, copper, and refractory metals.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.9781627084598
EISBN: 978-1-62708-459-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340117
EISBN: 978-1-62708-427-7
Abstract
This chapter provides an overview of the rolling and finishing processes required to create a sheet, plate, or foil product from a direct chill (DC) cast ingot. The flow paths, equipment, and operations are described with a view to the basic evolution of the microstructure, surface characteristics, and dimensions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340143
EISBN: 978-1-62708-427-7
Abstract
Aluminum shapes, rod, bar, tubes, and wire may be produced directly as extrusions or by subsequent processing of continuous cast stock. This chapter describes the key aspects of aluminum extrusion and wire production focusing on the more common hot extrusion process and presenting the general types of aluminum extrusion alloys. An overview of free-machining alloys and products, and weldable 6xxx and 7xxx high-strength structural alloys is also provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340165
EISBN: 978-1-62708-427-7
Abstract
Forged aluminum products vary widely in their production methods and applications. The forging process allows for control of microstructure and directional properties, and their fatigue and fracture resistance are superior to shape castings. This chapter presents the types, equipment, process steps, alloys, and products of aluminum forging.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340211
EISBN: 978-1-62708-427-7
Abstract
This chapter provides basic concepts and background for customer-related manufacturing processes applied to aluminum products including forming, joining and welding, surface treatments, and machinability. It reviews the selection criteria, key testing regimes, and original equipment manufacturer (OEM) requirements. The chapter also presents examples that demonstrate the importance of choosing the correct alloy and temper to successfully meet the OEM fabrication criteria.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320157
EISBN: 978-1-62708-332-4
Abstract
Malleable iron has unique properties that justify its application in the metal working industry. This chapter discusses the advantages, limitations, and mechanical properties of malleable iron; provides a description of the malleabilization process; and presents manufacturing guidelines for malleable iron castings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290111
EISBN: 978-1-62708-319-5
Abstract
The conversion of feedstock into a shape involves the application of heat and pressure, and possibly solvents. This chapter discusses the operating principle, advantages, limitations, and applications of such shaping processes, namely additive manufacturing, cold isostatic pressing, die compaction, extrusion, injection molding, slip casting, slurry processes, and tape casting. Information on equipment setup, requirements, and the various factors influencing these processes are described. In addition, the chapter provides information on novel approaches and processing costs applicable to these shaping processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.9781627082594
EISBN: 978-1-62708-259-4
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220353
EISBN: 978-1-62708-259-4
Abstract
This chapter discusses the effects of hot working on the structure and properties of steel. It explains how working steels at high temperatures promotes diffusion, which helps close cavities and pores, and how it changes the shape and distribution of segregates, offsetting their effect. It describes the effect of hot working on nonmetallic inclusions and the many properties influenced by them. It discusses the recrystallization mechanism by which hot working produces microstructural changes and explains how to control it by adjusting temperature, degree of reduction, and cooling rates. It describes special cases of segregation, including banding and why it occurs, and the application of closed die forging. The chapter also presents several examples of hot working defects, including forging laps, cracks, and overheated or burned steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220403
EISBN: 978-1-62708-259-4
Abstract
With cold work, mechanical strength (measured either by yield strength or ultimate tensile strength) increases and ductility (measured by elongation, reduction of area, or fracture toughness) normally decreases. This chapter discusses the mechanisms that produce these changes and the factors that influence them. It explains how cold working increases dislocation density and how that affects the stress-strain characteristics of steel, particularly the onset of deformation. It describes the effects of deformation on ferrite, austenite, cementite, and pearlite, and how to optimize their microstructure for various applications through controlled deformation. It also provides information on subcritical annealing, the examination and control of texture, the use of optical microscopy to monitor the effects of recrystallization, and the effect of cold working on threaded fasteners, nails, and filaments used to manufacture cords.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030074
EISBN: 978-1-62708-282-2
Abstract
This chapter is dedicated mostly to the metallurgical effects on the corrosion behavior of corrosion-resistant alloys. It begins with a section describing the importance of alloying elements on the corrosion behavior of nickel alloys. The chapter considers the metallurgical effects of alloy composition for heat-resistant alloys, nickel corrosion-resistant alloys, and nickel-base alloys. This chapter also discusses the corrosion implications of changing the alloy microstructure via solid-state transformation, second-phase precipitation, or cold work. It concludes with a comparison of corrosion behavior between cast and wrought product forms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030169
EISBN: 978-1-62708-282-2
Abstract
This chapter addresses the general effects of composition, mechanical treatment, surface treatment, processing, and fabrication operations on the corrosion resistance of aluminum and its alloys. Different types of surface treatments covered include claddings, anodizing, and conversion coatings. The processing steps that can have relatively significant impact on corrosion resistance are homogenization, rolling, extrusion, quenching, aging, and annealing.
1