Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6
Milling
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390456
EISBN: 978-1-62708-459-8
Abstract
In contrast to most plastic deformation processes, the shape of a machined component is not uniquely defined by the tooling. Instead, it is affected by complex interactions between tool geometry, material properties, and frictional stresses and is further complicated by tool wear. This chapter covers the mechanics and tribology of metal cutting processes. It discusses the factors that influence chip formation, including tool and process geometry, cutting forces and speeds, temperature, and stress distribution. It reviews the causes and effects of tool wear and explains how to predict and extend the life of cutting tools based on the material of construction, the use of cutting fluids, and the means of lubrication. It presents various methods for evaluating workpiece materials, chip formation, wear, and surface finish in cutting processes such as turning, milling, and drilling. It also discusses the mechanics and tribology of surface grinding and other forms of abrasive machining.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110144
EISBN: 978-1-62708-247-1
Abstract
The orientation of the devices within a package determine the best chosen approach for access to a select component embedded in epoxy both in package or System in Package and multi-chip module (MCM). This article assists the analyst in making decisions on frontside access using flat lapping, chemical decapsulation, laser ablation, plasma reactive ion etching (RIE), CNC based milling and polishing, or a combination of these coupled with optical or electrical endpoint means. This article discusses the general characteristics, advantages, and disadvantages of each of these techniques. It also presents a case study illustrating the application of CNC milling to isolate MCM leakage failure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110153
EISBN: 978-1-62708-247-1
Abstract
The need for precise targeted interactive surgery on boards or modules is the main driver of backside preparation technology. This article assists the analyst in making decisions on backside thinning and polishing requirements. Thinning of the substrates can be accomplished by flat lapping, laser assisted chemical etch, plasma reactive ion etch, and CNC based milling and polishing. The article discusses the general characteristics, key principles, advantages, and disadvantages of these processes. It also contains case studies that illustrate the application of these processes to ceramic cavity devices, injection molded parts, and ball grid arrays.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110379
EISBN: 978-1-62708-247-1
Abstract
With semiconductor device dimension continuously scaling down and increasing complexity in integrated circuits, delayering techniques for reverse engineering is becoming increasingly challenging. The primary goal of delayering in semiconductor failure analysis is to successfully remove layers of material in order to locate and identify the area of interest. Several of the top-down delayering techniques include wet chemical etching, dry reactive ion etching, top-down parallel lapping (including chemical-mechanical polishing), ion beam milling and laser delayering techniques. This article discusses the general procedure, types, advantages, and disadvantages of each of these techniques. In this article, two types of different semiconductor die level backend of line technologies are presented: aluminum metallization and copper metallization.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.9781627083454
EISBN: 978-1-62708-345-4
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200377
EISBN: 978-1-62708-354-6
Abstract
This chapter presents the factors affecting machinability. It provides a detailed discussion on the machining of steel castings. These include microstructure effects, hardness and strength effects, turning, face milling and drilling, casting surface effects, and weld area effects. The chapter also presents an overview of machining practices.