Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-12 of 12
Grinding
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390456
EISBN: 978-1-62708-459-8
Abstract
In contrast to most plastic deformation processes, the shape of a machined component is not uniquely defined by the tooling. Instead, it is affected by complex interactions between tool geometry, material properties, and frictional stresses and is further complicated by tool wear. This chapter covers the mechanics and tribology of metal cutting processes. It discusses the factors that influence chip formation, including tool and process geometry, cutting forces and speeds, temperature, and stress distribution. It reviews the causes and effects of tool wear and explains how to predict and extend the life of cutting tools based on the material of construction, the use of cutting fluids, and the means of lubrication. It presents various methods for evaluating workpiece materials, chip formation, wear, and surface finish in cutting processes such as turning, milling, and drilling. It also discusses the mechanics and tribology of surface grinding and other forms of abrasive machining.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610461
EISBN: 978-1-62708-303-4
Abstract
This chapter discusses the causes and effects of wear along with prevention methods. It covers abrasive, erosive, erosion-corrosion, grinding, gouging, adhesive, and fretting wear. It also discusses various forms of contact-stress fatigue, including subsurface-origin fatigue, surface-origin fatigue, subcase-origin fatigue (spalling fatigue), and cavitation fatigue.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030043
EISBN: 978-1-62708-349-2
Abstract
Rough grinding and polishing of mounted specimens are required to prepare the composite sample for optical analysis. This chapter describes these techniques for preparing composite materials. First, it provides information on grinding and polishing equipment and describes the processes and process variables for sample preparation. Then, the chapter discusses the processes of abrasive sizing for grinding and rough polishing. Next, it provides a summary of grinding methods, rough polishing, and final polishing. Finally, information on common polishing artifacts that can result from any of the steps is provided.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030115
EISBN: 978-1-62708-349-2
Abstract
Transmitted-light methods reveal more details of the morphology of fiber-reinforced polymeric composites than are observable using any other available microscopy techniques. This chapter describes the various aspects relating to the selection and preparation of ultrathin-section specimens of fiber-reinforced polymeric composites for examination by transmitted-light microscopy techniques. The preparation steps covered are a selection of the rough section, preparation of the rough section for preliminary mounting, grinding and polishing the primary-mount first surface, mounting the first surface on a glass slide, and preparing the second surface (top surface). The optimization of microscope conditions and analysis of specimens by microscopy techniques are also covered. In addition, examples of composite ultrathin sections that are analyzed using transmitted-light microscopy contrast methods are shown throughout.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230199
EISBN: 978-1-62708-298-3
Abstract
This chapter explains how to safely prepare beryllium alloy samples for metallographic analysis. It describes grinding, polishing, and etching procedures in detail. It also discusses the identification of major and minor constituents and the general appearance of beryllium microstructure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250089
EISBN: 978-1-62708-345-4
Abstract
Metal removal processes for gear manufacture can be grouped into two general categories: rough machining (or gear cutting) and finishing (or high-precision machining). This chapter discusses the processes involved in machining for bevel and other gears. The chapter describes the type of gear as the major variable and discusses the machining methods best suited to specific conditions. Next, the chapter provides information on gear cutter material and nominal speeds and feeds for gear hobbing. Further, it describes the cutting fluids recommended for gear cutting and presents a comparison of steels for gear cutting. The operating principles of computer numerical control and hobbing machines are also covered. This is followed by sections that discuss the processes involved in grinding, honing, and lapping of gears. Finally, the chapter provides information on the superfinishing of gears.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.9781627083454
EISBN: 978-1-62708-345-4
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280189
EISBN: 978-1-62708-267-9
Abstract
The qualities that make superalloys excellent engineering materials also make them difficult to machine. This chapter discusses the challenges involved in machining superalloys and the factors that determine machinability. It addresses material removal rates, cutting tool materials, tool life, and practical issues such as set up time, tool changes, and production scheduling. It describes several machining processes, including turning, boring, planing, trepanning, shaping, broaching, drilling, tapping, thread milling, and grinding. It also provides information on toolholders, fixturing, cutting and grinding fluids, and tooling modifications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.9781627083478
EISBN: 978-1-62708-347-8
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.9781627083379
EISBN: 978-1-62708-337-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770199
EISBN: 978-1-62708-337-9
Abstract
Mechanical treatments such as grinding and shot peening are often employed in the production of case-carburized parts. Grinding, besides restoring precision, removes carbide films, internal oxidation, and high-temperature transformation products. Shot peening strengthens component surfaces and induces a stress state that increases fatigue resistance. This chapter describes both processes as well as roller burnishing. It explains how these treatments are applied and how they influence the microstructure, properties, and behaviors of case-hardened components. It also addresses process challenges, particularly in regard to grinding.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900325
EISBN: 978-1-62708-358-4
Abstract
This chapter presents an overview of some of the major causes of tool and die failures. The chapter describes fracture and fracture toughness of tool steels, and the influence of factors such as steel quality and primary processing, mechanical design, heat treatment, grinding and finishing, and distortion and dimensional change.