Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-5 of 5
Plasma nitriding
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410551
EISBN: 978-1-62708-265-5
Abstract
This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy laser and electron beams. The chapter compares methods and includes several example applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900089
EISBN: 978-1-62708-350-8
Abstract
Ion nitriding equipment can be categorized into two groups: cold-wall continuous direct current (dc) equipment and hot-wall pulsed dc equipment. This chapter focuses on these two categories along with other important considerations for ion (plasma) nitriding equipment and processing. Other important considerations discussed include the hollow cathode effect, sputter cleaning, furnace loading, pressure/voltage relationships, workpiece masking, and furnace configuration options. The chapter describes five methods of cooling parts from the process temperature to an acceptable exposure temperature after plasma nitriding. The chapter also presents some of the advantages of the pulsed plasma process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900125
EISBN: 978-1-62708-350-8
Abstract
This chapter first lists the compositions of typical steels that are suitable for nitriding. It then presents considerations for steel selection. The chapter also shows the influence of alloying elements on hardness after nitriding and the depth of nitriding. It provides a detailed discussion on plasma nitriding of type 422 stainless steel, nitriding of type 440A and type 630 (17-4 PH) stainless steel. The chapter also discusses plasma nitride case depths.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900139
EISBN: 978-1-62708-350-8
Abstract
Process gas control for plasma (ion) nitriding is a matter of estimating the flows necessary to accomplish the required surface metallurgy. This chapter reviews several studies aimed at better understanding process gas control in plasma nitriding and its influence on compound zone formation. Emphasis is placed on the effect of sputtering on the kinetics of compound zone formation. The discussion covers the processes involved in process gas control analysis by photo spectrometry and mass spectrometry and the difficulties associated with gas analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320159
EISBN: 978-1-62708-347-8
Abstract
Several limitations in achieving optimal gear performance with conventional nitriding have led researchers to work on a variety of novel and improved nitriding processes. Of these, ion/plasma nitriding offers some promising results, which are reviewed in this chapter. The chapter concludes with a case history describing the application of ion nitriding to an internal ring gear of an epicyclic gearbox.