Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-12 of 12
Cyaniding
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Nitriding and Ferritic Nitrocarburizing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 April 2024
DOI: 10.31399/asm.tb.phtpp.t59380153
EISBN: 978-1-62708-456-7
Abstract
This chapter details suitable steels for gas nitriding and discusses conventional gas nitriding, plasma (Ion) nitriding, the ferritic nitrocarburizing processes, gaseous ferritic nitrocarburizing, plasma nitrocarburizing, and the salt-bath ferritic nitrocarburizing processes.
Book Chapter
Surface Modification
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410551
EISBN: 978-1-62708-265-5
Abstract
This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy laser and electron beams. The chapter compares methods and includes several example applications.
Book Chapter
Surface Hardening of Steel
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240395
EISBN: 978-1-62708-251-8
Abstract
This chapter discusses the process characteristics, advantages, disadvantages, and applications of various processes involved in surface hardening of steel. These include pack carburizing, liquid carburizing, gas carburizing, vacuum carburizing, plasma carburizing, gas nitriding, liquid nitriding, carbonitriding, and hardfacing. The chapter describes two surface hardening processes by localized heat treatment: flame hardening and induction hardening. It also briefly summarizes other surface hardening processes, namely, aluminizing, siliconizing, chromizing, titanium carbide coatings, and boronizing.
Book Chapter
Nitriding
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250227
EISBN: 978-1-62708-345-4
Abstract
Nitriding is a surface hardening heat treatment that introduces nitrogen into the surface of steel while it is in the ferritic condition. Gas nitriding using ammonia as the nitrogen-carrying species is the most commonly employed process and is emphasized in this chapter. Nitriding produces a wear- and fatigue-resistant surface on gear teeth and is used in applications where gears are not subjected to high shock loads or contact stress. It is useful for gears that need to maintain their surface hardness at elevated temperatures. Gears used in industrial, automotive, and aerospace applications are commonly nitrided. This chapter discusses the processes involved in gas, controlled, and ion nitriding.
Book Chapter
Ion Nitriding Equipment
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900089
EISBN: 978-1-62708-350-8
Abstract
Ion nitriding equipment can be categorized into two groups: cold-wall continuous direct current (dc) equipment and hot-wall pulsed dc equipment. This chapter focuses on these two categories along with other important considerations for ion (plasma) nitriding equipment and processing. Other important considerations discussed include the hollow cathode effect, sputter cleaning, furnace loading, pressure/voltage relationships, workpiece masking, and furnace configuration options. The chapter describes five methods of cooling parts from the process temperature to an acceptable exposure temperature after plasma nitriding. The chapter also presents some of the advantages of the pulsed plasma process.
Book Chapter
Nitriding in Fluidized Beds
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900111
EISBN: 978-1-62708-350-8
Abstract
A fluidized-bed furnace system can be used for the gas nitriding process. This chapter focuses on fluidized-bed nitriding. It discusses the methods of heating a fluidized bed. The heating system can be electrical or gas, and internal or external. The chapter describes nitriding and oxynitriding processes in the fluidized-bed furnace. It also explains how to operate the fluid bed for nitriding. The chapter provides a discussion on the measurement of the gas dissociation.
Book Chapter
Steels For Nitriding
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900125
EISBN: 978-1-62708-350-8
Abstract
This chapter first lists the compositions of typical steels that are suitable for nitriding. It then presents considerations for steel selection. The chapter also shows the influence of alloying elements on hardness after nitriding and the depth of nitriding. It provides a detailed discussion on plasma nitriding of type 422 stainless steel, nitriding of type 440A and type 630 (17-4 PH) stainless steel. The chapter also discusses plasma nitride case depths.
Book Chapter
Control of the Process Gas in Plasma Conditions
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900139
EISBN: 978-1-62708-350-8
Abstract
Process gas control for plasma (ion) nitriding is a matter of estimating the flows necessary to accomplish the required surface metallurgy. This chapter reviews several studies aimed at better understanding process gas control in plasma nitriding and its influence on compound zone formation. Emphasis is placed on the effect of sputtering on the kinetics of compound zone formation. The discussion covers the processes involved in process gas control analysis by photo spectrometry and mass spectrometry and the difficulties associated with gas analysis.
Book Chapter
Stop-Off Procedures for Selective Nitriding
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900163
EISBN: 978-1-62708-350-8
Abstract
Stop-off coatings prevent nitriding of selected areas on components. This chapter discusses the processes, advantages, and disadvantages of stop-off techniques for gas nitriding, salt bath nitriding, and ion nitriding.
Book Chapter
Troubleshooting
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900185
EISBN: 978-1-62708-350-8
Abstract
This chapters reviews the various process, material, and post-treatment problems that can occur in nitriding and how to troubleshoot them. The troubleshooting methods discussed relate to gas nitriding, salt bath nitriding, and ion nitriding.
Book Chapter
Nitriding Gears
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320133
EISBN: 978-1-62708-347-8
Abstract
Nitriding is a case-hardening process used for alloy steel gears and is quite similar to case carburizing. Nitriding of gears can be done in either a gas or liquid medium containing nitrogen. This chapter discusses the processes involved in gas nitriding. It reviews the effects of white layer formation in nitrided gears and presents general recommendations for nitrided gears. The chapter describes the microstructure, overload and fatigue damage, bending-fatigue life, cost, and distortion of nitrided gears. Information on nitriding steels used in Europe and the applications of nitrided gears are also provided. The chapter presents case studies on successful nitriding of a gear and on the failure of nitrided gears used in a gearbox subjected to a load with wide fluctuations.
Book Chapter
Modern Nitriding Processes
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320159
EISBN: 978-1-62708-347-8
Abstract
Several limitations in achieving optimal gear performance with conventional nitriding have led researchers to work on a variety of novel and improved nitriding processes. Of these, ion/plasma nitriding offers some promising results, which are reviewed in this chapter. The chapter concludes with a case history describing the application of ion nitriding to an internal ring gear of an epicyclic gearbox.